3,721 research outputs found

    Exchange in silicon-based quantum computer architecture

    Full text link
    The silicon-based quantum computer proposal has been one of the intensely pursued ideas during the past three years. Here we calculate the donor electron exchange in silicon and germanium, and demonstrate an atomic-scale challenge for quantum computing in Si (and Ge), as the six (four) conduction band minima in Si (Ge) lead to inter-valley electronic interferences, generating strong oscillations in the exchange splitting of two-donor two-electron states. Donor positioning with atomic scale precision within the unit cell thus becomes a decisive factor in determining the strength of the exchange coupling--a fundamental ingredient for two-qubit operations in a silicon-based quantum computer.Comment: 5 pages, 2 figure

    Electronic structures of free-standing nanowires made from indirect bandgap semiconductor gallium phosphide

    Full text link
    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)--a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ\Gamma-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula.Comment: 19 pages, 10 figure

    Coherent population trapping in a dressed two-level atom via a bichromatic field

    Full text link
    We show theoretically that by applying a bichromatic electromagnetic field, the dressed states of a monochromatically driven two-level atom can be pumped into a coherent superposition termed as dressed-state coherent population trapping. Such effect can be viewed as a new doorknob to manipulate a two-level system via its control over dressed-state populations. Application of this effect in the precision measurement of Rabi frequency, the unexpected population inversion and lasing without inversion are discussed to demonstrate such controllability.Comment: 14 pages, 6 figure

    Phase diagram of a Bose-Fermi mixture in a one-dimensional optical lattice in terms of fidelity and entanglement

    Full text link
    We study the ground-state phase diagram of a Bose-Fermi mixture loaded in a one-dimensional optical lattice by computing the ground-state fidelity and quantum entanglement. We find that the fidelity is able to signal quantum phase transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation state of the system; and the concurrence can be used to signal the transition between the density-wave phase and the Ising phase.Comment: 4 pages 3 figure

    Ground-state fidelity of Luttinger liquids: A wave functional approach

    Full text link
    We use a wave functional approach to calculate the fidelity of ground states in the Luttinger liquid universality class of one-dimensional gapless quantum many-body systems. The ground-state wave functionals are discussed using both the Schrodinger (functional differential equation) formulation and a path integral formulation. The fidelity between Luttinger liquids with Luttinger parameters K and K' is found to decay exponentially with system size, and to obey the symmetry F(K,K')=F(1/K,1/K') as a consequence of a duality in the bosonization description of Luttinger liquids.Comment: 13 pages, IOP single-column format. Sec. 3 expanded with discussion of short-distance cut-off. Some typos corrected. Ref. 44 in v2 is now footnote 2 (moved by copy editor). Published versio

    Whole‐brain microcirculation detection after ischemic stroke based on swept‐source optical coherence tomography

    Full text link
    The occurrence and development of ischemic stroke are closely related to cerebral blood flow. Real‐time monitoring of cerebral perfusion level is very useful for understanding the mechanisms of the disease. A wide field of view (FOV) is conducive to capturing lesions and observing the progression of the disease. In this paper, we attempt to monitor the whole‐brain microcirculation in middle cerebral artery occlusion (MCAO) rats over time using a wide FOV swept‐source OCT (SS‐OCT) system. A constrained image registration algorithm is used to remove motion artifacts that are prone to occur in a wide FOV angiography. During ischemia, cerebral perfusion levels in the left and right hemispheres, as well as in the whole brain were quantified and compared. Changes in the shape and location of blood vessels were also recorded. The results showed that the trend in cerebral perfusion levels of both hemispheres was highly consistent during MCAO, and the position of the blood vessels varied over time. This work will provide new insights of ischemic stroke and is helpful to assess the effectiveness of potential treatment strategies.En face maximum intensity projections (MIP) of the whole‐brain vascular networks obtained by wide field of view (FOV) swept‐source optical coherence tomography (SS‐OCT) system.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151895/1/jbio201900122_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151895/2/jbio201900122.pd

    Thermodynamics, strange quark matter, and strange stars

    Get PDF
    Because of the mass density-dependence, an extra term should be added to the expression of pressure. However, it should not appear in that of energy according to both the general ensemble theory and basic thermodynamic principle. We give a detail derivation of the thermodynamics with density-dependent particle masses. With our recently determined quark mass scaling, we study strange quark matter in this new thermodynamic treatment, which still indicates a possible absolute stability as previously found. However, the density behavior of the sound velocity is opposite to the previous finding, but consistent with one of our recent publication. We have also studied the structure of strange stars using the obtained equation of state.Comment: 6 pages, 6 PS figures, REVTeX styl

    (e,2e) study of two-center interference effects in the ionization of N(2)

    Get PDF
    A number of previous studies have suggested the possibility of two-center interference effects in the single ionization of diatomic molecules such as H2 and N2. While interference effects have been successfully observed in the ionization of H2, to date evidence for interference in N2 ionization has yet to be conclusively demonstrated. This study presents triply differential cross sections for electron impact ionization of N2, measured using the (e,2e) technique. The data are probed for signatures of two-center interference effects. Evidence for interference manifesting in the cross sections is observed.L. R. Hargreaves, C. Colyer, M. A. Stevenson, B. Lohmann, O. Al-Hagan, D. H. Madison and C. G. Nin

    Polarization instabilities in a two-photon laser

    Full text link
    We describe the operating characteristics of a new type of quantum oscillator that is based on a two-photon stimulated emission process. This two-photon laser consists of spin-polarized and laser-driven 39^{39}K atoms placed in a high-finesse transverse-mode-degenerate optical resonator, and produces a beam with a power of ∌\sim 0.2 ÎŒ\mu W at a wavelength of 770 nm. We observe complex dynamical instabilities of the state of polarization of the two-photon laser, which are made possible by the atomic Zeeman degeneracy. We conjecture that the laser could emit polarization-entangled twin beams if this degeneracy is lifted.Comment: Accepted by Physical Review Letters. REVTeX 4 pages, 4 EPS figure
    • 

    corecore