2,581 research outputs found

    Approximate dynamics of dark matter ellipsoids

    Full text link
    The collapse of non-collisional dark matter and the formation of pancake structures in the Universe are investigated approximately. Collapse is described by a system of ordinary differential equations, in the model of a uniformly rotating, three-axis, uniform density ellipsoid. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. The formation of the equilibrium configuration, secular instability and the transition from a spheroid to a three-axis ellipsoid are investigated numerically and analytically in this dynamical model.Comment: 11 pages, 8 figure

    Possible evolution of dim radio quiet neutron star 1E 1207.4-5209 based on a B-decay model

    Full text link
    Dim radio-quiet neutron star (DRQNS) 1E 1207.4-5209 is one of the most heavily examined isolated neutron stars. Wide absorption lines were observed in its spectrum obtained by both XMM-Newton and Chandra X-ray satellites. These absorption lines can be interpreted as a principal frequency centered at 0.7 keV and its harmonics at 1.4, 2.1 and possibly 2.8 keV. The principal line can be formed by resonant proton cyclotron scattering leading to a magnetic field which is two orders of magnitude larger than the perpendicular component of the surface dipole magnetic field (B) found from the rotation period (P) and the time rate of change in the rotation period (\.{P}) of 1E 1207.4-5209. Besides, age of the supernova remnant (SNR) G296.5+10.0 which is physically connected to 1E 1207.4-5209 is two orders of magnitude smaller than the characteristic age (Ď„\tau=P/2\.{P}) of the neutron star. These huge differences between the magnetic field values and the ages can be explained based on a B-decay model. If the decay is assumed to be exponential, the characteristic decay time turns out to be several thousand years which is three orders of magnitude smaller than the characteristic decay time of radio pulsars represented in an earlier work. The lack of detection of radio emission from DRQNSs and the lack of point sources and pulsar wind nebulae in most of the observed SNRs can also be partly explained by such a very rapid exponential decay. The large difference between the characteristic decay times of DRQNSs and radio pulsars must be related to the differences in the magnetic fields, equation of states and masses of these isolated neutron stars.Comment: 13 pages, 1 figur

    National Health Insurance Proposals: An Ethical Perspective

    Get PDF
    Presented to the WMU Center for the Study of Ethics in Society, January 31, 1992

    Dynamical chaos in the problem of magnetic jet collimation

    Full text link
    We investigate dynamics of a jet collimated by magneto-torsional oscillations. The problem is reduced to an ordinary differential equation containing a singularity and depending on a parameter. We find a parameter range for which this system has stable periodic solutions and study bifurcations of these solutions. We use Poincar\'e sections to demonstrate existence of domains of regular and chaotic motions. We investigate transition from periodic to chaotic solutions through a sequence of period doublings.Comment: 11 pages, 29 figures, 1 table, MNRAS (published online

    Gravitational lensing by gravitational waves

    Full text link
    Gravitational lensing by gravitational wave is considered. We notice that although final and initial direction of photons coincide, displacement between final and initial trajectories occurs. This displacement is calculated analytically for the plane gravitational wave pulse. Estimations for observations are discussed.Comment: 9 pages, 3 figure

    A Closer Look at Two AdS4AdS_4 Branes in an AdS5AdS_5 Bulk

    Full text link
    We investigate a scenario with two AdS4AdS_4 branes in an AdS5AdS_5 bulk. In this scenario there are two gravitons and we investigate the role played by each of them for different positions of the second brane. We show that both gravitons play a significant role only when the turn-around point in the warp factor is approximately equidistant from both branes. We find that the ultralight mode becomes heavy as the second brane approaches the turn-around point, and the physics begins to resemble that of the RS model. Thus we demonstrate the crucial role played by the turn-around in the warp factor in enabling the presence of both gravitons.Comment: 21 pages, late
    • …
    corecore