59 research outputs found

    Integrable mixing of A_{n-1} type vertex models

    Full text link
    Given a family of monodromy matrices {T_u; u=0,1,...,K-1} corresponding to integrable anisotropic vertex models of A_{(n_u)-1}-type, we build up a related mixed vertex model by means of glueing the lattices on which they are defined, in such a way that integrability property is preserved. Algebraically, the glueing process is implemented through one dimensional representations of rectangular matrix algebras A(R_p,R_q), namely, the `glueing matrices' zeta_u. Here R_n indicates the Yang-Baxter operator associated to the standard Hopf algebra deformation of the simple Lie algebra A_{n-1}. We show there exists a pseudovacuum subspace with respect to which algebraic Bethe ansatz can be applied. For each pseudovacuum vector we have a set of nested Bethe ansatz equations identical to the ones corresponding to an A_{m-1} quasi-periodic model, with m equal to the minimal range of involved glueing matrices.Comment: REVTeX 28 pages. Here we complete the proof of integrability for mixed vertex models as defined in the first versio

    Spectrum generating algebra for the continuous spectrum of a free particle in Lobachevski space

    Full text link
    In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra of the system plus a subalgebra of operators that give the spectrum of the system and connects the eigenfunctions of the Hamiltonian among themselves. In our case, the geometrical symmetry algebra is so(3,1)\frak{so}(3,1) and the SGA is so(4,2)\frak{so}(4,2). We start with a representation of so(4,2)\frak{so}(4,2) by functions on a realization of the Lobachevski space given by a two sheeted hyperboloid, where the Lie algebra commutators are the usual Poisson-Dirac brackets. Then, introduce a quantized version of the representation in which functions are replaced by operators on a Hilbert space and Poisson-Dirac brackets by commutators. Eigenfunctions of the Hamiltonian are given and "naive" ladder operators are identified. The previously defined "naive" ladder operators shift the eigenvalues by a complex number so that an alternative approach is necessary. This is obtained by a non self-adjoint function of a linear combination of the ladder operators which gives the correct relation among the eigenfunctions of the Hamiltonian. We give an eigenfunction expansion of functions over the upper sheet of two sheeted hyperboloid in terms of the eigenfunctions of the Hamiltonian.Comment: 23 page

    Low temperature electrical transport in microwave plasma fabricated free-standing graphene and N-graphene sheets

    Get PDF
    Funding Information: This work was performed under the framework of the PEGASUS (Plasma Enabled and Graphene Allowed Synthesis of Unique nano-Structures) project, funded by the European Union’s Horizon research and innovation program under grant agreement No 766894. Work partially funded by Portuguese FCT - Fundação para a Ciência e a Tecnologia, through EAGER project (PTDC/NAN-MAT/30565/2017) and under projects UIDB/50010/2020 and UIDP/50010/2020. The authors would like to thank S. Russev for the SEM images. M A, E V, K K and Zh K thank the European Regional Development Fund within the Operational Programme ‘Science and Education for Smart Growth 2014–2020’ under the Project CoE ‘National center of mechatronics and clean technologies ‘BG05M2OP001-1.001-0008’. Publisher Copyright: © 2023 The Author(s). Published by IOP Publishing Ltd.In this paper, the electrical transport in free-standing graphene and N-graphene sheets fabricated by a microwave plasma-based method is addressed. Temperature-dependent resistivity/conductivity measurements are performed on the graphene/N-graphene sheets compressed in pellets. Different measurement configurations reveal directional dependence of current flow—the room-temperature conductivity longitudinal to the pellet’s plane is an order of magnitude higher than the transversal one, due to the preferential orientation of graphene sheets in the pellets. SEM imaging confirms that the graphene sheets are mostly oriented parallel to the pellet’s plane and stacked in agglomerates. The high longitudinal electrical conductivity with values on the order of 103 S/m should be noted. Further, the current flow mechanism revealed from resistivity-temperature dependences from 300K down to 10K shows non-metallic behavior manifested with an increasing resistivity with decreasing the temperature d ρ / d T < 0 usually observed for insulating or localized systems. The observed charge transport shows variable range hopping at lower temperatures and thermally activated behaviour at higher temperatures. This allows us to attribute the charge transport mechanism to a partially disordered system in which single graphene sheets are placed predominantly parallel to each other and stacked together.publishersversionpublishe

    New remarks on the linear constraint self-dual boson and Wess-Zumino terms

    Get PDF
    In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral boson (SCB), in contradiction with some results appearing in the literature. We have promoted a canonical transformation that shows directly that the SCB is composed of two Floreanini-Jackiw's particles with the same chirality which spectrum is a vacuum-like one. As another conflictive result we have proved that a Wess-Zumino term used in the literature consists of the scalar field, once again denying the assertion that the WZ term adds a new degree of freedom to the SCB theory in order to modify the physics of the system.Comment: 6 pages, Revtex. Final version to appear in Physical Review

    Spin physics with antiprotons

    Full text link
    New possibilities arising from the availability at GSI of antiproton beams, possibly polarised, are discussed. The investigation of the nucleon structure can be boosted by accessing in Drell-Yan processes experimental asymmetries related to cross-sections in which the parton distribution functions (PDF) only appear, without any contribution from fragmentation functions; such processes are not affected by the chiral suppression of the transversity function h1(x)h_1(x). Spin asymmetries in hyperon production and Single Spin Asymmetries are discussed as well, together with further items like electric and magnetic nucleonic form factors and open charm production. Counting rates estimations are provided for each physical case. The sketch of a possible experimental apparatus is proposed.Comment: Presented for the proceedings of ASI "Spin and Symmetry", Prague, July 5-10, 2004, to be published in Czech. J. Phys. 55 (2005

    Hamilton-Jacobi treatment of a non-relativistic particle on a curved space

    Get PDF
    In this paper a non-relativistic particle moving on a hypersurface in a curved space and the multidimensional rotator are investigated using the Hamilton-Jacobi formalism. The equivalence with the Dirac Hamiltonian formalism is demonstrated in both Cartesian and curvilinear coordinates. The energy spectrum of the multidimensional rotator is equal to that of a pure Laplace-Beltrami operator with no additional constant arising from the curvature of the sphere.Comment: 10 pages, LaTe

    A Transient Transgenic RNAi Strategy for Rapid Characterization of Gene Function during Embryonic Development

    Get PDF
    RNA interference (RNAi) is a powerful strategy for studying the phenotypic consequences of reduced gene expression levels in model systems. To develop a method for the rapid characterization of the developmental consequences of gene dysregulation, we tested the use of RNAi for “transient transgenic” knockdown of mRNA in mouse embryos. These methods included lentiviral infection as well as transposition using the Sleeping Beauty (SB) and PiggyBac (PB) transposable element systems. This approach can be useful for phenotypic validation of putative mutant loci, as we demonstrate by confirming that knockdown of Prdm16 phenocopies the ENU-induced cleft palate (CP) mutant, csp1. This strategy is attractive as an alternative to gene targeting in embryonic stem cells, as it is simple and yields phenotypic information in a matter of weeks. Of the three methodologies tested, the PB transposon system produced high numbers of transgenic embryos with the expected phenotype, demonstrating its utility as a screening method

    Исследование аномально высокого времени релаксации фототока в диодах Шоттки на основе a-Ga2O3

    Get PDF
    Ga2O3 is an ultra-wideband material with excellent optical characteristics. It is a promising material for power applications and optoelectronics because of its high electrical breakdown voltage and radiation hardness. It is optically transparent for visible light and UVA but UVC-sensitive. One of the main disadvantages of this material is the anomalous slow photoeffect: photoconductivity rise and decay characteristic times can be more than hundreds of seconds long. This "slow" photoconductivity effect severely limits the utilisation of the Ga2O3-based devices. The aim of this work is the investigation of the nature of this effect. The results of the photoinduced current rise and decay under 530 nm and 259 nm LED are measured in the HVPE-grown α-Ga2O3-based Schottky diode. Upon UV-illumination the photocurrent rise consists of three parallel processes: fast signal growth, slow growth and very slow decay with characteristic times near 70 ms, 40 s and 300 s respectively. Subsequent 530 nm LED illumination resulted in photoinduced current rise consisting of two mechanisms with characterisatic times 130 ms and 40 s on which a very slow decrease of the photocurrent amplitude with characteristic time of 1500 s was superimposed. 530 nm illumination stimulates this process. Protoinduced current relaxation analysis shows the presence of the deep levels with energies (EC - 0.17 eV). It is suggested that extremely slow relaxations can be associated with potential fluctuations near the Schottky barrier.Ga2O3 — широкозонный материал с рядом уникальных характеристик, которые делают его перспективным материалом фотоники: он оптически прозрачен для оптического и ближнего ультрафиолетового излучения, обладает высокими значениями пробивных напряжений и высокой радиационной стойкостью. Одним из недостатков, которые в настоящее время препятствуют использованию данного материала в солнечно-слепых фотодетекторах, является аномально большое время нарастания и спада фотопроводимости, которое может достигать сотен секунд. Такая «замедленная» фотопроводимость существенно ограничивает область применения этих материалов. Проведены исследования природы этого эффекта. Выполнены измерения времени нарастания и спада фотоиндуцированного тока в диодах Шотки на основе α-Ga2O3, выращенных методом HVPE на сапфире, при засветке светодиодами с длиной волны 259 и 530 нм. При засветке ультрафиолетовым излучением рост тока через фоточувствительную структуру из двух встречных диодов происходил в три этапа: достаточно быстрое нарастание с характерным временем 70 мс, медленный рост с характерным временем 40 с и затянутый спад с характерным временем порядка 300 с. При последующей засветке излучением зеленого цвета рост тока с характерным временем 130 мс и 40 с накладывался на стимулируемый засветкой медленный спад амплитуды максимального тока с характерным временем порядка 1500 с. Анализ релаксации тока показал наличие глубоких центров с энергией (EC – 0,17 эВ). Существенное замедление релаксации фотоиндуцированного тока можно связать с флуктуациями потенциала вблизи барьера Шотки
    corecore