59 research outputs found
Generalized Neighbor-Interaction Models Induced by Nonlinear Lattices
It is shown that the tight-binding approximation of the nonlinear
Schr\"odinger equation with a periodic linear potential and periodic in space
nonlinearity coefficient gives rise to a number of nonlinear lattices with
complex, both linear and nonlinear, neighbor interactions. The obtained
lattices present non-standard possibilities, among which we mention a
quasi-linear regime, where the pulse dynamics obeys essentially the linear
Schr{\"o}dinger equation. We analyze the properties of such models both in
connection with their modulational stability, as well as in regard to the
existence and stability of their localized solitary wave solutions
Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation
We examine the modulational and parametric instabilities arising in a
non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The
principal motivation for our study stems from the dynamics of Bose-Einstein
condensates trapped in a deep optical lattice. We find that under periodic
variations of the heights of the interwell barriers (or equivalently of the
scattering length), additionally to the modulational instability, a window of
parametric instability becomes available to the system. We explore this
instability through multiple-scale analysis and identify it numerically. Its
principal dynamical characteristic is that, typically, it develops over much
larger times than the modulational instability, a feature that is qualitatively
justified by comparison of the corresponding instability growth rates
Telomerization reaction of ethylene with ethanol
The research's main aim is to synthesize saturated alcohols containing four or more carbon atoms in the chain from ethylene and ethanol, which are products of natural gas processing. During of investigation, isobutyl and isohexyl alcohols were synthesized, and the optimal conditions for the process were determined. The dependence of the product yield on various factors has been studied
Modulational instability in cigar shaped Bose-Einstein condensates in optical lattices
A self consistent theory of a cigar shaped Bose-Einstein condensate (BEC)
periodically modulated by a laser beam is presented. We show, both
theoretically and numerically, that modulational instability/stability is the
mechanism by which wavefunctions of soliton type can be generated in cigar
shaped BEC subject to a 1D optical lattice. The theory explains why bright
solitons can exist in BEC with positive scattering length and why condensate
with negative scattering length can be stable and give rise to dark solitary
pulses.Comment: Submitted, 4 pages, 3 figures. Revised versio
Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps
We study the dynamics of one-dimensional solitons in the attractive and
repulsive Bose-Einstein condensates (BECs) loaded into an optical lattice (OL),
which is combined with an external parabolic potential. First, we demonstrate
analytically that, in the repulsive BEC, where the soliton is of the gap type,
its effective mass is \emph{negative}. This gives rise to a prediction for the
experiment: such a soliton cannot be not held by the usual parabolic trap, but
it can be captured (performing harmonic oscillations) by an anti-trapping
inverted parabolic potential. We also study the motion of the soliton a in long
system, concluding that, in the cases of both the positive and negative mass,
it moves freely, provided that its amplitude is below a certain critical value;
above it, the soliton's velocity decreases due to the interaction with the OL.
At a late stage, the damped motion becomes chaotic. We also investigate the
evolution of a two-soliton pulse in the attractive model. The pulse generates a
persistent breather, if its amplitude is not too large; otherwise, fusion into
a single fundamental soliton takes place. Collisions between two solitons
captured in the parabolic trap or anti-trap are considered too. Depending on
their amplitudes and phase difference, the solitons either perform stable
oscillations, colliding indefinitely many times, or merge into a single
soliton. Effects reported in this work for BECs can also be formulated for
optical solitons in nonlinear photonic crystals. In particular, the capture of
the negative-mass soliton in the anti-trap implies that a bright optical
soliton in a self-defocusing medium with a periodic structure of the refractive
index may be stable in an anti-waveguide.Comment: 22pages, 9 figures, submitted to Journal of Physics
Nonlinear excitations in arrays of Bose-Einstein condensates
The dynamics of localized excitations in array of Bose-Einstein condensates
is investigated in the framework of the nonlinear lattice theory. The existence
of temporarily stable ground states displaying an atomic population
distributions localized on very few lattice sites (intrinsic localized modes),
as well as, of atomic population distributions involving many lattice sites
(envelope solitons), is studied both numerically and analytically. The origin
and properties of these modes are shown to be inherently connected with the
interplay between macroscopic quantum tunnelling and nonlinearity induced
self-trapping of atoms in coupled BECs. The phenomenon of Bloch oscillations of
these excitations is studied both for zero and non zero backgrounds. We find
that in a definite range of parameters, homogeneous distributions can become
modulationally unstable. We also show that bright solitons and excitations of
shock wave type can exist in BEC arrays even in the case of positive scattering
length. Finally, we argue that BEC array with negative scattering length in
presence of linear potentials can display collapse.Comment: Submitted to Phys. Rev.
Stable spinning optical solitons in three dimensions
We introduce spatiotemporal spinning solitons (vortex tori) of the
three-dimensional nonlinear Schrodinger equation with focusing cubic and
defocusing quintic nonlinearities. The first ever found completely stable
spatiotemporal vortex solitons are demonstrated. A general conclusion is that
stable spinning solitons are possible as a result of competition between
focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let
Glassy dynamics in thin films of polystyrene
Glassy dynamics was investigated for thin films of atactic polystyrene by
complex electric capacitance measurements using dielectric relaxation
spectroscopy. During the isothermal aging process the real part of the electric
capacitance increased with time, whereas the imaginary part decreased with
time. It follows that the aging time dependences of real and imaginary parts of
the electric capacitance were primarily associated with change in volume (film
thickness) and dielectric permittivity, respectively. Further, dielectric
permittivity showed memory and rejuvenation effects in a similar manner to
those observed for poly(methyl methacrylate) thin films. On the other hand,
volume did not show a strong rejuvenation effect.Comment: 7 pages, 7 figures. Phys. Rev. E (in press
Telomerization reaction of ethylene with ethanol
The research's main aim is to synthesize saturated alcohols containing four or more carbon atoms in the chain from ethylene and ethanol, which are products of natural gas processing. During of investigation, isobutyl and isohexyl alcohols were synthesized, and the optimal conditions for the process were determined. The dependence of the product yield on various factors has been studied
- …