180 research outputs found

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,γ γ = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p

    Measurement of the cross-sections of the electroweak and total production of a Zγ pair in association with two jets in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Search for flavour-changing neutral tqH interactions with H → γγ in pp collisions at √s = 13 TeV using the ATLAS detector

    Get PDF
    A search for flavour-changing neutral interactions involving the top quark, the Higgs boson and an up-type quark q (q = c, u) is presented. The proton-proton collision data set used, with an integrated luminosity of 139 fb−1, was collected at √s = 13 TeV by the ATLAS experiment at the Large Hadron Collider. Both the decay process t → qH in tt¯ production and the production process pp → tH, with the Higgs boson decaying into two photons, are investigated. No significant excess is observed and upper limits are set on the t → cH and the t → uH branching ratios of 4.3 × 10−4 and 3.8 × 10−4, respectively, at the 95% confidence level, while the expected limits in the absence of signal are 4.7 × 10−4 and 3.9 × 10−4. Combining this search with ATLAS searches in the H → τ+τ− and H → bb¯ final states yields observed (expected) upper limits on the t → cH branching ratio of 5.8 × 10−4 (3.0 × 10−4) at the 95% confidence level. The corresponding observed (expected) upper limit on the t → uH branching ratio is 4.0 × 10−4 (2.4 × 10−4)

    Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in ZZ → 4ℓ events with the ATLAS detector at √s = 13 TeV

    Get PDF
    A study of the polarisation and CP properties in ZZ production is presented. The used data set corresponds to an integrated luminosity of 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The ZZ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised Z bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be 2.45 ± 0.60 fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings

    Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

    Get PDF
    Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at √s = 13 TeV and with an integrated luminosity of 140 fb−1. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory

    Measurement of the Bs0 → μμ effective lifetime with the ATLAS detector

    Get PDF
    This paper reports the frst ATLAS measurement of the B0 s → µµ efective lifetime. The measurement is based on the data collected in 2015–2016, amounting to 26.3 fb−1 of 13 TeV LHC proton-proton collisions. The proper decay-time distribution of 58 ± 13 background-subtracted signal candidates is ft with simulated signal templates parameterised as a function of the B0 s efective lifetime, with statistical uncertainties extracted through a Neyman construction. The resulting efective measurement of the B0 s → µµ lifetime is 0.99+0.42 −0.07 (stat.) ± 0.17 (syst.) ps and it is found to be consistent with the Standard Model

    Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for electroweak production of wino-like chargino pairs, χ~1+χ~1−, and of wino-like chargino and next-to-lightest neutralino, χ~1±χ~20, are presented. The models explored assume that the charginos decay into a W boson and the lightest neutralino, χ~1±→W±χ~10. The next-to-lightest neutralinos are degenerate in mass with the chargino and decay to χ~10 and either a Z or a Higgs boson, χ~20→Zχ~10 or hχ~10. The searches exploit the presence of a single isolated lepton and missing transverse momentum from the W boson decay products and the lightest neutralinos, and the presence of jets from hadronically decaying Z or W bosons or from the Higgs boson decaying into a pair of b-quarks. The searches use 139 fb−1 of √s = 13 TeV proton-proton collisions data collected by the ATLAS detector at the Large Hadron Collider between 2015 and 2018. No deviations from the Standard Model expectations are found, and 95% confidence level exclusion limits are set. Chargino masses ranging from 260 to 520 GeV are excluded for a massless χ~10 in chargino pair production models. Degenerate chargino and next-to-lightest neutralino masses ranging from 260 to 420 GeV are excluded for a massless χ~10 for χ~20→Zχ~10. For decays through an on-shell Higgs boson and for mass-splitting between χ~1±/χ~20 and χ~10 as small as the Higgs boson mass, mass limits are improved by up to 40 GeV in the range of 200–260 GeV and 280–470 GeV compared to previous ATLAS constraints

    Study of high-transverse-momentum Higgs boson production in association with a vector boson in the qqbb final state with the ATLAS detector

    Get PDF
    This Letter presents the first study of Higgs boson production in association with a vector boson ( V = W or Z ) in the fully hadronic q q b b final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at √ s = 13     TeV and corresponding to an integrated luminosity of 137     fb − 1 . The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b -tagging properties are used to identify jets consistent with Higgs bosons decaying into b ¯ b . Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The V H production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250–450, 450–650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ = 1.4 + 1.0 − 0.9 and the corresponding cross section is 3.1 ± 1.3 ( stat ) + 1.8 − 1.4 ( syst )     pb
    corecore