519 research outputs found
Size dependence of solar X-ray flare properties
Non-thermal and thermal parameters of 85 solar flares of GOES class B1 to M6
(background subtracted classes A1 to M6) have been compared to each other. The
hard X-ray flux has been measured by RHESSI and a spectral fitting provided
flux and spectral index of the non-thermal emission, as well as temperature and
emission measure of the thermal emission. The soft X-ray flux was taken from
GOES measurements. We find a linear correlation in a double logarithmic plot
between the non-thermal flux and the spectral index. The higher the
acceleration rate of a flare, the harder the non-thermal electron distribution.
The relation is similar to the one found by a comparison of the same parameters
from several sub-peaks of a single flare. Thus small flares behave like small
subpeaks of large flares. Thermal flare properties such as temperature,
emission measure and the soft X-ray flux also correlate with peak non-thermal
flux. A large non-thermal peak flux entails an enhancement in both thermal
parameters. The relation between spectral index and the non-thermal flux is an
intrinsic feature of the particle acceleration process, depending on flare
size. This property affects the reported frequency distribution of flare
energies.Comment: Astronomy and Astrophysics, in pres
Isolated Electrostatic Structures Observed Throughout the Cluster Orbit: Relationship to Magnetic Field Strength
Isolated electrostatic structures are observed throughout much of the 4 Re by
19.6 Re Cluster orbit. These structures are observed in the Wideband plasma
wave instrument's waveform data as bipolar and tripolar pulses. These
structures are observed at all of the boundary layers, in the solar wind and
magnetosheath, and along auroral field lines at 4.5-6.5 Re. Using the Wideband
waveform data from the various Cluster spacecraft we have carried out a survey
of the amplitudes and time durations of these structures and how these
quantities vary with the local magnetic field strength. Such a survey has not
been carried out before, and it reveals certain characteristics of solitary
structures in a finite magnetic field, a topic still inadequately addressed by
theories. We find that there is a broad range of electric field amplitudes at
any specific magnetic field strength, and there is a general trend for the
electric field amplitudes to increase as the strength of the magnetic field
increases over a range of 5 to 500 nT. We provide a possible explanation for
this trend that releates to the structures being Bernstein-Greene-Kruskal mode
solitary waves. There is no corresponding dependence of the duration of the
structures on the magnetic field strength, although a plot of these two
quantities reveals the unexpected result that with the exception of the
magnetosheath, all of the time durations for all of the other regions are
comparable, wheras the magnetosheath time durations clearly are in a different
category of much smaller time duration. We speculate that this implies the
structures are much smaller in size.Comment: 24 pages plus 8 figures; paper presented at Spatio-Temporal Analysis
and Multipoint Measurements in Space (STAMMS) conference, held in Orleans,
France on 12-16 May 200
Contact Discontinuities in Models of Contact Binaries Undergoing Thermal Relaxation Oscillations
In this paper we pursue the suggestion by Shu, Lubow & Anderson (1979) and
Wang (1995) that contact discontinuity (DSC) may exist in the secondary in the
expansion TRO (thermal relaxation oscillation) state. It is demonstrated that
there is a mass exchange instability in some range of mass ratio for the two
components. We show that the assumption of {\it constant} volume of the
secondary should be relaxed in DSC model. For {\it all} mass ratio the
secondary alway satisfies the condition that no mass flow returns to the
primary through the inner Lagrangian point. The secondary will expand in order
to equilibrate the interaction between the common convective envelope and the
secondary. The contact discontinuity in contact binary undergoing thermal
relaxation does not violate the second law of thermodynamics. The maintaining
condition of contact discontinuity is derived in the time-dependent model. It
is desired to improve the TRO model with the advanced contact discontinuity
layer in future detailed calculations.Comment: 5 pages in emulateapj, 1 figur
Does fix the Electromagnetic Form Factor at ?
We show that the decay is a reliable
source of information for the electromagnetic form factor of the pion at
by using general arguments to estimate, or
rather, put upper bounds on, the background processes that could spoil this
extraction. We briefly comment on the significance of the resulting
.Comment: 10 pages revtex manuscript, one figure--not included, U. of MD PP
#94-00
Recent Developments of NEMO: Detection of Solar Eruptions Characteristics
The recent developments in space instrumentation for solar observations and
telemetry have caused the necessity of advanced pattern recognition tools for
the different classes of solar events. The Extreme ultraviolet Imaging
Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new
class of eruptive events which are often identified as signatures of Coronal
Mass Ejection (CME) initiations on solar disk. It is evident that a crucial
task is the development of an automatic detection tool of CMEs precursors. The
Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an
operational tool that detects automatically solar eruptions using EIT image
sequences. NEMO applies techniques based on the general statistical properties
of the underlying physical mechanisms of eruptive events on the solar disc. In
this work, the most recent updates of NEMO code - that have resulted to the
increase of the recognition efficiency of solar eruptions linked to CMEs - are
presented. These updates provide calculations of the surface of the dimming
region, implement novel clustering technique for the dimmings and set new
criteria to flag the eruptive dimmings based on their complex characteristics.
The efficiency of NEMO has been increased significantly resulting to the
extraction of dimmings observed near the solar limb and to the detection of
small-scale events as well. As a consequence, the detection efficiency of CMEs
precursors and the forecasts of CMEs have been drastically improved.
Furthermore, the catalogues of solar eruptive events that can be constructed by
NEMO may include larger number of physical parameters associated to the dimming
regions.Comment: 12 Pages, 5 figures, submitted to Solar Physic
Survey on solar X-ray flares and associated coherent radio emissions
The radio emission during 201 X-ray selected solar flares was surveyed from
100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection
includes all RHESSI flares larger than C5.0 jointly observed from launch until
June 30, 2003. Detailed association rates of radio emission during X-ray flares
are reported. In the decimeter wavelength range, type III bursts and the
genuinely decimetric emissions (pulsations, continua, and narrowband spikes)
were found equally frequently. Both occur predominantly in the peak phase of
hard X-ray (HXR) emission, but are less in tune with HXRs than the
high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron
radiation. In 10% of the HXR flares, an intense radiation of the above genuine
decimetric types followed in the decay phase or later. Classic meter-wave type
III bursts are associated in 33% of all HXR flares, but only in 4% they are the
exclusive radio emission. Noise storms were the only radio emission in 5% of
the HXR flares, some of them with extended duration. Despite the spatial
association (same active region), the noise storm variations are found to be
only loosely correlated in time with the X-ray flux. In a surprising 17% of the
HXR flares, no coherent radio emission was found in the extremely broad band
surveyed. The association but loose correlation between HXR and coherent radio
emission is interpreted by multiple reconnection sites connected by common
field lines.Comment: Solar Physics, in pres
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar
flares, plasmoid-induced-reconnection and fractal reconnection are proposed and
examined. We first briefly summarize recent solar observations that give us
hints on the role of plasmoid (flux rope) ejections in flare energy release. We
then discuss the plasmoid-induced-reconnection model, which is an extention of
the classical two-ribbon-flare model which we refer to as the CSHKP model. An
essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by
inhibiting reconnection) and the induction of a strong inflow into reconnection
region. Using a simple analytical model, we show that the plasmoid ejection and
acceleration are closely coupled with the reconnection process, leading to a
nonlinear instability for the whole dynamics that determines the macroscopic
reconnection rate uniquely. Next we show that the current sheet tends to have a
fractal structure via the following process path: tearing, sheet thinning,
Sweet- Parker sheet, secondary tearing, further sheet thinning... These
processes occur repeatedly at smaller scales until a microscopic plasma scale
(either the ion Larmor radius or the ion inertial length) is reached where
anomalous resistivity or collisionless reconnection can occur. The current
sheet eventually has a fractal structure with many plasmoids (magnetic islands)
of different sizes. When these plasmoids are ejected out of the current sheets,
fast reconnection occurs at various different scales in a highly time dependent
manner. Finally, a scenario is presented for fast reconnection in the solar
corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in
press; ps-file is also available at
http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing
Intermittent magnetohydrodynamical turbulence is most likely at work in the
magnetized solar atmosphere. As a result, an array of scaling and multi-scaling
image-processing techniques can be used to measure the expected
self-organization of solar magnetic fields. While these techniques advance our
understanding of the physical system at work, it is unclear whether they can be
used to predict solar eruptions, thus obtaining a practical significance for
space weather. We address part of this problem by focusing on solar active
regions and by investigating the usefulness of scaling and multi-scaling
image-processing techniques in solar flare prediction. Since solar flares
exhibit spatial and temporal intermittency, we suggest that they are the
products of instabilities subject to a critical threshold in a turbulent
magnetic configuration. The identification of this threshold in scaling and
multi-scaling spectra would then contribute meaningfully to the prediction of
solar flares. We find that the fractal dimension of solar magnetic fields and
their multi-fractal spectrum of generalized correlation dimensions do not have
significant predictive ability. The respective multi-fractal structure
functions and their inertial-range scaling exponents, however, probably provide
some statistical distinguishing features between flaring and non-flaring active
regions. More importantly, the temporal evolution of the above scaling
exponents in flaring active regions probably shows a distinct behavior starting
a few hours prior to a flare and therefore this temporal behavior may be
practically useful in flare prediction. The results of this study need to be
validated by more comprehensive works over a large number of solar active
regions.Comment: 26 pages, 7 figure
Recommended from our members
International Perspectives on Nonformal Education
The New England Regional Meeting of the Comparative and International Education Society was held on the campus of the University of Massachusetts, Amherst, on 3 May, 1979. The conference was co-sponsored by the Division of Community Education, Springfield College, and the Center for International Education, School of Education, University of Massachusetts.
The theme of the conference was International Perspectives on Nonformal Education. The papers delivered ranged in topics from the use of traditional art forms and poetry as a medium of nonformal education to the discussion of the philosophical foundations underlying the field. Case studies of specific nonformal education projects helped to highlight the conference. A total fifteen papers were delivered, all of which are included in their original form in this document. The papers represent the views of the authors and not necessarily those of the organizers
What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models
One of the major discoveries of the Extreme ultraviolet Imaging Telescope
(EIT) on SOHO were intensity enhancements propagating over a large fraction of
the solar surface. The physical origin(s) of the so-called `EIT' waves is still
strongly debated. They are considered to be either wave (primarily fast-mode
MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in
understanding the nature of EUV waves lies with the limitations of the EIT
observations which have been used almost exclusively for their study. Their
limitations are largely overcome by the SECCHI/EUVI observations on-board the
STEREO mission. The EUVI telescopes provide high cadence, simultaneous
multi-temperature coverage, and two well-separated viewpoints. We present here
the first detailed analysis of an EUV wave observed by the EUVI disk imagers on
December 07, 2007 when the STEREO spacecraft separation was .
Both a small flare and a CME were associated with the wave cadence, and single
temperature and viewpoint coverage. These limitations are largely overcome by
the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes
provide high cadence, simultaneous multi-temperature coverage, and two
well-separated viewpoints. Our findings give significant support for a
fast-mode interpretation of EUV waves and indicate that they are probably
triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres
- …