4,165 research outputs found

    Evidence of coupling between the thermal and nonthermal emission in the gamma-ray binary LS I +61 303

    Get PDF
    The gamma-ray binary LS I +61 303 is composed of a Be star and a compact companion orbiting in an eccentric orbit. Variable flux modulated with the orbital period of ~26.5 d has been detected from radio to very high-energy gamma rays. In addition, the system presents a superorbital variability of the phase and amplitude of the radio outburst with a period of ~4.6 yr. We present optical photometric observations of LS I +61 303 spanning ~1.5 yr and contemporaneous Halpha equivalent width (EW Halpha) data. The optical photometry shows, for the first time, that the known orbital modulation suffers a positive orbital phase shift and an increase in flux for data obtained 1-yr apart. This behavior is similar to that already known at radio wavelengths, indicating that the optical flux follows the superorbital variability as well. The orbital modulation of the EW Halpha presents the already known superorbital flux variability but shows, also for the first time, a positive orbital phase shift. In addition, the optical photometry exhibits a lag of ~0.1-0.2 in orbital phase with respect to the EW Halpha measurements at similar superorbital phases, and presents a lag of ~0.1 and ~0.3 orbital phases with respect noncontemperaneous radio and X-ray outbursts, respectively. The phase shifts detected in the orbital modulation of thermal indicators, such as the optical flux and the EW Halpha, are in line with the observed behavior for nonthermal indicators, such as X-ray or radio emission. This shows that there is a strong coupling between the thermal and nonthermal emission processes in the gamma-ray binary LS I +61 303. The orbital phase lag between the optical flux and the EW Halpha is naturally explained considering different emitting regions in the circumstellar disk, whereas the secular evolution might be caused by the presence of a moving one-armed spiral density wave in the disk.Comment: 4 pages, 3 figures, accepted for publication in A&A (this version matches the published version

    Guidelines for Adaptive Management: Outcomes of the OzAM 2003 workshop, Brisbane

    Get PDF

    VOLUNTARY VERSUS MANDATORY AGRICULTURAL POLICIES TO PROTECT WATER QUALITY: ADOPTION OF NITROGEN TESTING IN NEBRASKA

    Get PDF
    Agriculture is among the principal contributors of nonpoint source pollution, a major cause of impaired water quality (Puckett). The amount of agricultural pollution depends in part on agricultural practices or technologies that farmers employ. In the United States, policies for changing farmers\u27 practices related to soil conservation and water quality protection have usually relied on voluntary adoption of new practices. Policy tools to promote voluntary adoption include extension education, technical assistance, and cost sharing. In recent years, both state and federal water quality projects have been initiated targeting these different approaches to different areas. Increasingly, however, regulation is being used by the Federal Government and by states to mandate the adoption of practices by farmers (United States Environmental Protection Agency 1993; Ribaudo and Woo). To date, little research has been undertaken on the relative effectiveness of regulatory and incentive approaches. While the immediate goal of adoption may be more easily achieved by regulation, that regulation will not necessarily principal contributors of nonpoint source pollution, a major cause of impaired water quality (Puckett). The amount of agricultural pollution depends in part on agricultural practices or technologies that farmers employ. In the United States, policies for changing farmers\u27 practices related to soil conservation and water quality protection have usually relied on voluntary adoption of new practices. Policy tools to promote voluntary adoption include extension education, technical assistance, and cost sharing. In recent years, both state and federal water quality projects have been initiated targeting these different approaches to different areas. Increasingly, however, regulation is being used by the Federal Government and by states to mandate the adoption of practices by farmers (United States Environmental Protection Agency 1993; Ribaudo and Woo). To date, little research has been undertaken on the relative effectiveness of regulatory and incentive approaches. While the immediate goal of adoption may be more easily achieved by regulation, that regulation will not necessarily lead to the proper or desired use of the practice. This article investigates the relative effectiveness of incentive projects and regulation to promote both adoption of nitrogen (N) testing and the use of information from the tests to adjust N fertilizer use

    Modelling the density homogenisation of a block and granular bentonite buffer upon non-isothermal saturation

    Get PDF
    This paper presents a numerical analysis of the mechanical performance of a bentonite clay buffer for the containment of nuclear waste in the context of deep geological disposal. The design of the buffer is based on the Swiss concept where the waste canisters are emplaced on pedestals of compacted bentonite blocks and the remaining space between the tunnel and the canister is backfilled with grains of highly compacted bentonite. A complete analysis of the long-term performance of the repository requires a good understanding of the mechanical evolution of the bentonite upon heating from the radioactive waste and hydration from the host rock. Despite its importance, the implications of the initial heterogeneous bentonite layout, characterised by blocks and grains, on the final dry density at the repository scale in the steady state have not been previously studied. The present study aims to shed light into these processes by means of finite element modelling using an advanced constitutive model for the bentonite behaviour that considers several thermo-hydro-mechanical couplings. The constitutive model is shown to be able to reproduce several laboratory tests involving saturation of block and pellets at different dry densities. The model predictions, extended up to 100,000 years, indicate that the bentonite blocks and grains tend to homogenise in terms of dry density as the buffer reaches full saturation. Due to the different swelling potential of the block pedestal and the granular backfill, the canister is subjected to movements, although these remain relatively small. The impact of initial segregation of the granular bentonite is also studied and it is seen to not to affect substantially the mechanical evolution of the buffer, although it might reduce canister displacements

    An Editorial

    Get PDF

    Gamma rays from microquasars Cygnus X-1 and Cygnus X-3

    Get PDF
    Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deeply studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea (arXiv:1708.05153
    • 

    corecore