49 research outputs found
Near-field Electrical Detection of Optical Plasmons and Single Plasmon Sources
Photonic circuits can be much faster than their electronic counterparts, but
they are difficult to miniaturize below the optical wavelength scale. Nanoscale
photonic circuits based on surface plasmon polaritons (SPs) are a promising
solution to this problem because they can localize light below the diffraction
limit. However, there is a general tradeoff between the localization of an SP
and the efficiency with which it can be detected with conventional far-field
optics. Here we describe a new all-electrical SP detection technique based on
the near-field coupling between guided plasmons and a nanowire field-effect
transistor. We use the technique to electrically detect the plasmon emission
from an individual colloidal quantum dot coupled to an SP waveguide. Our
detectors are both nanoscale and highly efficient (0.1 electrons/plasmon), and
a plasmonic gating effect can be used to amplify the signal even higher (up to
50 electrons/plasmon). These results enable new on-chip optical sensing
applications and are a key step towards "dark" optoplasmonic nanocircuits in
which SPs can be generated, manipulated, and detected without involving
far-field radiation.Comment: manuscript followed by supplementary informatio
Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells
Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt.When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs.Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins
Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data
The endoplasmic reticulum (ER) is a key organelle of the secretion pathway involved in the synthesis of both proteins and lipids destined for multiple sites within and without the cell. The ER functions to both co- and post-translationally modify newly synthesized proteins and lipids and sort them for housekeeping within the ER and for transport to their sites of function away from the ER. In addition, the ER is involved in the metabolism and degradation of specific xenobiotics and endogenous biosynthetic products. A variety of proteomics studies have been reported on different subcompartments of the ER providing an ER protein dictionary with new data being made available on many protein complexes of relevance to the biology of the ER including the ribosome, the translocon, coatomer proteins, cytoskeletal proteins, folding proteins, the antigen-processing machinery, signaling proteins and proteins involved in membrane traffic. This review examines proteomics and cytological data in support of the presence of specific molecular machines at specific sites or subcompartments of the ER
Revising working models across time: Relationship situations that enhance attachment security
We propose the Attachment Security Enhancement Model (ASEM) to suggest how romantic relationships can promote chronic attachment security. One part of the ASEM examines partner responses that protect relationships from the erosive effects of immediate insecurity, but such responses may not necessarily address underlying insecurities in a personβs mental models. Therefore, a second part of the ASEM examines relationship situations that foster more secure mental models. Both parts may work in tandem. We posit that attachment anxiety should decline most in situations that foster greater personal confidence and more secure mental models of the self. In contrast, attachment avoidance should decline most in situations that involve positive dependence and foster more secure models of close others. The ASEM integrates research and theory, suggests novel directions for future research, and has practical implications, all of which center on the idea that adult attachment orientations are an emergent property of close relationships
Take AIM: Agro-ecological Intensification in Malawi through action research with smallholder farmers
LULL1 Retargets TorsinA to the Nuclear Envelope Revealing an Activity That Is Impaired by the DYT1 Dystonia Mutation
TorsinA (TorA) is an AAA+ ATPase in the endoplasmic reticulum (ER) lumen that is mutated in early onset DYT1 dystonia. TorA is an essential protein in mice and is thought to function in the nuclear envelope (NE) despite localizing throughout the ER. Here, we report that transient interaction of TorA with the ER membrane protein LULL1 targets TorA to the NE. FRAP and Blue Native PAGE indicate that TorA is a stable, slowly diffusing oligomer in either the absence or presence of LULL1. Increasing LULL1 expression redistributes both wild-type and disease-mutant TorA to the NE, while decreasing LULL1 with shRNAs eliminates intrinsic enrichment of disease-mutant TorA in the NE. When concentrated in the NE, TorA displaces the nuclear membrane proteins Sun2, nesprin-2G, and nesprin-3 while leaving nuclear pores and Sun1 unchanged. Wild-type TorA also induces changes in NE membrane structure. Because SUN proteins interact with nesprins to connect nucleus and cytoskeleton, these effects suggest a new role for TorA in modulating complexes that traverse the NE. Importantly, once concentrated in the NE, disease-mutant TorA displaces Sun2 with reduced efficiency and does not change NE membrane structure. Together, our data suggest that LULL1 regulates the distribution and activity of TorA within the ER and NE lumen and reveal functional defects in the mutant protein responsible for DYT1 dystonia