47 research outputs found

    Itinerant in-plane magnetic fluctuations and many-body correlations in Nax_xCoO2_2

    Full text link
    Based on the {\it ab-initio} band structure for Nax_xCoO2_2 we derive the single-electron energies and the effective tight-binding description for the t2gt_{2g} bands using projection procedure. Due to the presence of the next-nearest-neighbor hoppings a local minimum in the electronic dispersion close to the Γ\Gamma point of the first Brillouin zone forms. Correspondingly, in addition to a large Fermi surface an electron pocket close to the Γ\Gamma point emerges at high doping concentrations. The latter yields the new scattering channel resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates dominant itinerant in-plane ferromagnetic fluctuations above certain critical concentration xmx_m, in agreement with neutron scattering data. Below xmx_m the magnetic susceptibility shows a tendency towards the antiferromagnetic fluctuations. We further analyze the many-body effects on the electronic and magnetic excitations using various approximations applicable for different U/tU/t ratio.Comment: 10 page

    Electronic theory for itinerant in-plane magnetic fluctuations in Nax_xCoO2_2

    Full text link
    Starting from {\it ab-initio} band structure for Nax_xCoO2_2, we derive the single-electron energies and the effective tight-binding description for the t2gt_{2g} bands using a projection procedure. We find that due to the presence of the next-nearest-neighbor hoppings a local minimum in the electronic dispersion close to the Γ\Gamma point of the first Brillouin zone forms. Therefore, in addition to a large Fermi surface an electron pocket close to the Γ\Gamma point emerges at high doping concentrations. The latter yields the new scattering channel resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates itinerant in-plane ferromagnetic state above certain critical concentration xmx_m, in agreement with neutron scattering data. Below xmx_m the magnetic susceptibility shows a tendency towards the antiferromagnetic fluctuations. We estimate the value of 0.58<xm<0.70.58 < x_m < 0.7 within the rigid band model and within the Hubbard model with infinite on-site Coulomb repulsion consistent with the experimental phase diagram.Comment: 4 pages, 4 figures; LDA calculations were done with Na in the symmetric 2d position contrary to the 6h position in a previous version of this pape

    Competition of multiband superconducting and magnetic order in ErNi2B2C observed by Andreev reflection

    Get PDF
    Point contacts (PC) Andreev reflection dV/dI spectra for the antiferromagnetic (T_N =6K) superconductor (Tc=11K) ErNi2B2C have been measured for the two main crystallographic directions. Observed retention of the Andreev reflection minima in dV/dI up to Tc directly points to unusual superconducting order parameter (OP) vanishing at Tc. Temperature dependence of OP was obtained from dV/dI using recent theory of Andreev reflection including pair-breaking effect. For the first time existence of a two superconducting OPs in ErNi2B2C is shown. A distinct decrease of both OPs as temperature is lowered below T_N is observed.Comment: 5 pages, 5 figs, to be published in Europhys. Let

    The influence of defects on magnetic properties of fcc-Pu

    Full text link
    The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecular dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in ff-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.Comment: 13 pages, 4 figure

    Electronic structure and magnetic state of transuranium metals under pressure

    Get PDF
    Electronic structure of bcc Np, fcc Pu, Am, and Cm pure metals under pressure has been investigated employing the LDA+U method with spin-orbit coupling (LDA+U+SO). Magnetic state of the actinide ions was analyzed in both LS and jj coupling schemes to reveal the applicability of corresponding coupling bases. It was demonstrated that whereas Pu and Am are well described within the jj coupling scheme, Np and Cm can be described appropriately neither in {m-sigma}, nor in {jmj} basis, due to intermediate coupling scheme realizing in these metals that requires some finer treatment. The LDA+U+SO results for the considered transuranium metals reveal bands broadening and gradual 5f electron delocalization under pressure.Comment: 5 pages, 5 figure

    Pseudogap Value in the Energy Spectrum of LaOFeAs: Fixed Spin Moment Treatment

    Full text link
    The experimental data available up to date in literature corresponding to the paramagnetic - spin density wave transition in nonsuperconducting LaOFeAs are discussed. In particular, we pay attention that upon spin density wave transition there is a relative decrease of the density of states on the Fermi level and a pseudogap formation. The values of these quantities are not properly described in frames of the density functional theory. The agreement of them with experimental estimations becomes more accurate with the use of fixed spin moment procedure when iron spin moment is set to experimental value. Strong electron correlations which are not included into the present calculation scheme may lead both to the decrease of spin moment and renormalization of energy spectrum in the vicinity of the Fermi level for correct description of discussed characteristics

    Coulomb Parameter U and Correlation Strength in LaFeAsO

    Full text link
    First principles constrained density functional theory scheme in Wannier functions formalism has been used to calculate Coulomb repulsion U and Hund's exchange J parameters for iron 3d electrons in LaFeAsO. Results strongly depend on the basis set used in calculations: when O-2p, As-4p, and Fe-3d orbitals and corresponding bands are included, computation results in U=3-4 eV, however, with the basis set restricted to Fe-3d orbitals and bands only, computation gives parameters corresponding to F^0=0.8 eV, J=0.5 eV. LDA+DMFT (the Local Density Approximation combined with the Dynamical Mean-Field Theory) calculation with this parameters results in weakly correlated electronic structure that is in agreement with X-ray experimental spectra

    Coulomb repulsion and correlation strength in LaFeAsO from Density Functional and Dynamical Mean-Field Theories

    Full text link
    LDA+DMFT (Local Density Approximation combined with Dynamical Mean-Field Theory) computation scheme has been used to calculate spectral properties of LaFeAsO -- the parent compound for new high-Tc_c iron oxypnictides. Coulomb repulsion UU and Hund's exchange JJ parameters for iron 3d electrons were calculated using \textit {first principles} constrained density functional theory scheme in Wannier functions formalism. Resulting values strongly depend on the number of states taken into account in calculations: when full set of O-2p2p, As-4p4p, and Fe-3d orbitals with corresponding bands are included, computation results in U=3÷U=3\div4 eV and J=0.8 eV. In contrast to that when the basis set is restricted to Fe-3d orbitals and bands only, computation gives much smaller parameter values F0F^0=0.8 eV, JJ=0.5 eV. However, DMFT calculations with both parameter sets and corresponding to them choice of basis functions result in weakly correlated electronic structure that is in agreement with experimental X-ray and photoemission spectra.Comment: 13 pages, 9 figure

    Magnetic state of plutonium ion in metallic Pu and its compounds

    Full text link
    By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in \delta and \alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in both phases in agreement with experiment a nonmagnetic ground state was found with Pu ions in f^6 configuration with zero values of spin, orbital, and total moments. This result is determined by a strong spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a pseudogap between them, so that f^{5/2} subshell is already nearly completely filled with six electrons before Coulomb correlation effects were taken into account. The competition between spin-orbit coupling and exchange (Hund) interaction (favoring magnetic ground state) in 5f shell is so delicately balanced, that a small increase (less than 15%) of exchange interaction parameter value from J_H=0.48eV obtained in constrain LDA calculation would result in a magnetic ground state with nonzero spin and orbital moment values. For Pu compounds investigated in the present work, predominantly f^6 configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic moment values. Whereas pure jj coupling scheme was found to be valid for metallic plutonium, intermediate coupling scheme is needed to describe 5f shell in Pu compounds. The results of our calculations show that both spin-orbit coupling and exchange interaction terms in the Hamiltonian must be treated in a general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape

    High - Temperature Superconductivity in Iron Based Layered Compounds

    Full text link
    We present a review of basic experimental facts on the new class of high - temperature superconductors - iron based layered compounds like REOFeAs (RE=La,Ce,Nd,Pr,Sm...), AFe_2As_2 (A=Ba,Sr...), AFeAs (A=Li,...) and FeSe(Te). We discuss electronic structure, including the role of correlations, spectrum and role of collective excitations (phonons, spin waves), as well as the main models, describing possible types of magnetic ordering and Cooper pairing in these compounds.Comment: 43 pages, 30 figures, review talk on 90th anniversary of Physics Uspekh
    corecore