12 research outputs found

    Hot ductility of Nb- and Ti-bearing microalloyed steels and the inlfuence of thermal history

    Get PDF
    The hot ductility of Nb, Ti, and Nb-Ti containing steels has been studied under direct-cast conditions. A Gleeble 3500 thermomechanical simulator was used to determine hot ductility over the temperature range 1100 °C to 700 °C at a low strain rate of 7.5 × 10−4 s−1. Tensile samples were cooled at two different cooling rates, 100 °C/min and 200 °C/min, simulating, respectively, thick and thin slab casting processes. Complex thermal patterns designed to simulate the cooling conditions experienced near the surface of a slab during continuous casting were carried out for the Nb-Ti steel. The Nb-Ti steel had lower ductility than both the Nb and Ti steels. Increasing the cooling rate generally deteriorated ductility. The low recovery of ductility at higher temperatures is explained in terms of a low strain rate and fine precipitation delaying the onset of dynamic recrystallization. This can promote intergranular cracking as a result of grain boundary sliding in the austenite. At lower temperatures, ductility was further reduced due to the formation of thin ferrite films at the prior austenite grain boundaries. Simulating the thermal history experienced near the surface of thin (90 mm) cast slab improved ductility of the Nb-Ti steel by promoting coarser NbTi(C,N). This exposes a potential flaw in a simplified hot-ductility test: a failure to accurately represent the influence of the thermomechanical schedule on precipitation and, hence, hot ductility

    Effect of boron on the hot ductility behavior of a low carbon advanced ultra-high strength steel (A-UHSS)

    No full text
    This research work studied the effect of boron additions (14, 33, 82, 126, and 214 ppm) on the hot ductility behavior of a low carbon advanced ultra-high strength steel. For this purpose, specimens were subjected to a hot tensile test at different temperatures [923 K, 973 K, 1023 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 750 °C, 800 °C, 900 °C, and 1000 °C)] under a constant true strain rate of 10-3 s-1. The reduction of area (RA) of the tested samples until fracture was taken as a measure of the hot ductility. In general, results revealed a marked improvement in hot ductility from 82 ppm B when the stoichiometric composition for BN (0.8:1) was exceeded. By comparing the ductility curve of the steel with the highest boron content (B5, 214 ppm B) and the curve for the steel without boron (B0), the increase of hot ductility in terms of RA is over 100 pct. In contrast, the typical recovery of hot ductility at temperatures below the Ar3, where large amounts of normal transformation ferrite usually form in the structure, was not observed in these steels. On the other hand, the fracture surfaces indicated that the fracture mode tends to be more ductile as the boron content increases. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism, which in turn causes hot ductility loss. In general, results are discussed in terms of boron segregation and precipitation on austenitic grain boundaries during cooling from the austenitic range and subsequent plastic deformation.Postprint (published version
    corecore