54,783 research outputs found

    Capillary Adhesion at the Nanometer Scale

    Full text link
    Molecular dynamics simulations are used to study the capillary adhesion from a nonvolatile liquid meniscus between a spherical tip and a flat substrate. The atomic structure of the tip, the tip radius, the contact angles of the liquid on the two surfaces, and the volume of the liquid bridge are varied. The capillary force between the tip and substrate is calculated as a function of their separation h. The force agrees with continuum predictions for h down to ~ 5 to 10nm. At smaller h, the force tends to be less attractive than predicted and has strong oscillations. This oscillatory component of the capillary force is completely missed in the continuum theory, which only includes contributions from the surface tension around the circumference of the meniscus and the pressure difference over the cross section of the meniscus. The oscillation is found to be due to molecular layering of the liquid confined in the narrow gap between the tip and substrate. This effect is most pronounced for large tip radii and/or smooth surfaces. The other two components considered by the continuum theory are also identified. The surface tension term, as well as the meniscus shape, is accurately described by the continuum prediction for h down to ~ 1nm, but the capillary pressure term is always more positive than the corresponding continuum result. This shift in the capillary pressure reduces the average adhesion by a factor as large as 2 from its continuum value and is found to be due to an anisotropy in the pressure tensor. The cross-sectional component is consistent with the capillary pressure predicted by the continuum theory (i.e., the Young-Laplace equation), but the normal pressure that determines the capillary force is always more positive than the continuum counterpart.Comment: 16 pages, 14 figure

    Possibly New Charmed Baryon States from Bˉ0ppˉD0\bar B^0\to p\bar p D^{0} Decay

    Full text link
    We examine the invariant mass spectrum of D0pD^{0}p in Bˉ0ppˉD0\bar B^0\to p\bar p D^{0} decay measured by BABAR and find that through the 2-step processes of Bˉ0Bc+(D0p)pˉ\bar B^0\to {\bf B_c^+}(\to D^{0} p)\bar p, where Bc{\bf B_c} denotes a charmed baryon state, some of the peaks can be identified with the established Σc(2800)+\Sigma_c(2800)^+, Λc(2880)+\Lambda_c(2880)^+ and Λc(2940)+\Lambda_c(2940)^+. Moreover, in order to account for the measured spectrum, it is necessary to introduce a new charmed baryon resonance with (m,Γ)=(3212±20,167±34)(m,\,\Gamma)=(3212\pm 20,\,167\pm 34) MeV.Comment: 8 pages, 1 figure, title changed and discussions updated, version accepted for publication in Phys. Rev.

    The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension

    Full text link
    We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ\delta is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.Comment: 14 pages, 2 figure

    Defining Contact at the Atomic Scale

    Full text link
    Molecular dynamics simulations are used to study different definitions of contact at the atomic scale. The roles of temperature, adhesive interactions and atomic structure are studied for simple geometries. An elastic, crystalline substrate contacts a rigid, atomically flat surface or a spherical tip. The rigid surface is formed from a commensurate or incommensurate crystal or an amorphous solid. Spherical tips are made by bending crystalline planes or removing material outside a sphere. In continuum theory the fraction of atomically flat surfaces that is in contact rises sharply from zero to unity when a load is applied. This simple behavior is surprisingly difficult to reproduce with atomic scale definitions of contact. Due to thermal fluctuations, the number of atoms making contact at any instant rises linearly with load over a wide range of loads. Pressures comparable to the ideal hardness are needed to achieve full contact at typical temperatures. A simple harmonic mean-field theory provides a quantitative description of this behavior and explains why the instantaneous forces on atoms have a universal exponential form. Contact areas are also obtained by counting the number of atoms with a time-averaged repulsive force. For adhesive interactions, the resulting area is nearly independent of temperature and averaging interval, but usually rises from zero to unity over a range of pressures that is comparable to the ideal hardness. The only exception is the case of two identical commensurate surfaces. For nonadhesive surfaces, the mean pressure is repulsive if there is any contact during the averaging interval Δt\Delta t. The associated area is very sensitive to Δt\Delta t and grows monotonically. Similar complications are encountered in defining contact areas for spherical tips.Comment: 18 pages, 11 figure

    Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs

    Get PDF
    We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap

    Determination of Freeze-out Conditions from Lattice QCD Calculations

    Full text link
    Freeze-out conditions in Heavy Ion Collisions are generally determined by comparing experimental results for ratios of particle yields with theoretical predictions based on applications of the Hadron Resonance Gas model. We discuss here how this model dependent determination of freeze-out parameters may eventually be replaced by theoretical predictions based on equilibrium QCD thermodynamics.Comment: presented at the International Conference "Critical Point and Onset of Deconfinement - CPOD 2011", Wuhan, November 7-11, 201

    Soliton Resonances for MKP-II

    Get PDF
    Using the second flow - the Derivative Reaction-Diffusion system, and the third one of the dissipative SL(2,R) Kaup-Newell hierarchy, we show that the product of two functions, satisfying those systems is a solution of the modified Kadomtsev-Petviashvili equation in 2+1 dimension with negative dispersion (MKP-II). We construct Hirota's bilinear representation for both flows and combine them together as the bilinear system for MKP-II. Using this bilinear form we find one and two soliton solutions for the MKP-II. For special values of parameters our solution shows resonance behaviour with creation of four virtual solitons. Our approach allows one to interpret the resonance soliton as a composite object of two dissipative solitons in 1+1 dimensions.Comment: 11 pages, 2 figures, Talk on International Conference "Nonlinear Physics. Theory and Experiment. III", 24 June-3 July, 2004, Gallipoli(Lecce), Ital
    corecore