880 research outputs found

    Current facilitation by plasmon resonances between parallel wires of finite length

    Full text link
    The current voltage (IV) characteristics for perpendicular transport through two sequentially coupled wires of finite length is calculated analytically. The transport within a Coulomb blockade step is assisted by plasmon resonances that appear as steps in the IV characteristics with positions and heights depending on inter- and intrawire interactions. In particular, due to the interwire interactions, the peak positions shift to lower voltages in comparison to the noninteracting wires which reflects the facilitation of current by interactions. The interwire interactions are also found to enhance the thermally activated current.Comment: 5 pages, 1figur

    Prevalence, risk factors, and clinical patterns of chronic venous disorders of lower limbs: A population-based study in France

    Get PDF
    ObjectivesThe goals of this study were to document the prevalence of varicose veins, skin trophic changes, and venous symptoms in a sample of the general population of France, to document their main risk factors, and to assess relationships between them.MethodsThis cross-sectional epidemiologic study was carried out in the general population of 4 locations in France: Tarentaise, Grenoble, Nyons, and Toulon. Random samples of 2000 subjects per location were interviewed by telephone, and a sub-sample of subjects completed medical interviews and underwent physical examination, and the presence of varicose veins, trophic changes, and venous symptoms was recorded.ResultsPrevalence of varicose veins, skin trophic changes, and venous symptoms was not statistically different in the 4 locations. In contrast, sex-related differences were found: varicose veins were found in 50.5% of women versus 30.1% of men (P < .001); trophic skin changes were found in 2.8% of women versus 5.4% of men (P = NS), and venous symptoms were found in 51.3% of women 51.3% versus 20.4% of men (P < .001). Main risk factors for varicose veins were age and family history in both sexes, and pregnancy in women. Female sex was a significant factor only for non-saphenous varicose veins. Varicose veins, age, and pitting edema were the most significant risk factors for trophic skin changes. The risk factors for venous symptoms were female sex, varicose veins, and prolonged sitting or standing. A negative relationship with age was found in women.ConclusionOur results show a high prevalence of chronic venous disorders of the lower limbs in the general population of France, with no significant geographic variations. They also provide interesting insights regarding the association of varicose veins, skin trophic changes, and venous symptoms

    Two dimensional Dirac fermions in the presence of long-range correlated disorder

    Full text link
    We consider 2D Dirac fermions in the presence of three types of disorder: random scalar potential, random gauge potential and random mass with long-range correlations decaying as a power law. Using various methods such as the self-consistent Born approximation (SCBA), renormalization group (RG), the matrix Green function formalism and bosonisation we calculate the density of states and study the full counting statistics of fermionic transport at lower energy. The SCBA and RG show that the random correlated scalar potentials generate an algebraically small energy scale below which the density of states saturates to a constant value. For correlated random gauge potential, RG and bosonisation calculations provide consistent behavior of the density of states which diverges at zero energy in an integrable way. In the case of correlated random mass disorder the RG flow has a nontrivial infrared stable fixed point leading to a universal power-law behavior of the density of states and also to universal transport properties. In contrast to uncorrelated case the correlated scalar potential and random mass disorders give rise to deviation from the pseudodiffusive transport already to lowest order in disorder strength.Comment: 17 pages, 8 figures, revtex

    Glassy trapping of manifolds in nonpotential random flows

    Full text link
    We study the dynamics of polymers and elastic manifolds in non potential static random flows. We find that barriers are generated from combined effects of elasticity, disorder and thermal fluctuations. This leads to glassy trapping even in pure barrier-free divergenceless flows vf→0∌fϕv {f \to 0}{\sim} f^\phi (ϕ>1\phi > 1). The physics is described by a new RG fixed point at finite temperature. We compute the anomalous roughness R∌LζR \sim L^\zeta and dynamical t∌Lzt\sim L^z exponents for directed and isotropic manifolds.Comment: 5 pages, 3 figures, RevTe

    Particle-hole symmetric localization in two dimensions

    Get PDF
    We revisit two-dimensional particle-hole symmetric sublattice localization problem, focusing on the origin of the observed singularities in the density of states ρ(E)\rho(E) at the band center E=0. The most general such system [R. Gade, Nucl. Phys. B {\bf 398}, 499 (1993)] exhibits critical behavior and has ρ(E)\rho(E) that diverges stronger than any integrable power-law, while the special {\it random vector potential model} of Ludwiget al [Phys. Rev. B {\bf 50}, 7526 (1994)] has instead a power-law density of states with a continuously varying dynamical exponent. We show that the latter model undergoes a dynamical transition with increasing disorder--this transition is a counterpart of the static transition known to occur in this system; in the strong-disorder regime, we identify the low-energy states of this model with the local extrema of the defining two-dimensional Gaussian random surface. Furthermore, combining this ``surface fluctuation'' mechanism with a renormalization group treatment of a related vortex glass problem leads us to argue that the asymptotic low EE behavior of the density of states in the {\it general} case is ρ(E)∌E−1e−∣ln⁥E∣2/3\rho(E) \sim E^{-1} e^{-|\ln E|^{2/3}}, different from earlier prediction of Gade. We also study the localized phases of such particle-hole symmetric systems and identify a Griffiths ``string'' mechanism that generates singular power-law contributions to the low-energy density of states in this case.Comment: 18 pages (two-column PRB format), 10 eps figures include

    Density of states for the π\pi-flux state with bipartite real random hopping only: A weak disorder approach

    Full text link
    Gade [R. Gade, Nucl. Phys. B \textbf{398}, 499 (1993)] has shown that the local density of states for a particle hopping on a two-dimensional bipartite lattice in the presence of weak disorder and in the absence of time-reversal symmetry(chiral unitary universality class) is anomalous in the vicinity of the band center Ï”=0\epsilon=0 whenever the disorder preserves the sublattice symmetry. More precisely, using a nonlinear-sigma-model that encodes the sublattice (chiral) symmetry and the absence of time-reversal symmetry she argues that the disorder average local density of states diverges as âˆŁÏ”âˆŁâˆ’1exp⁥(−c∣lnâĄÏ”âˆŁÎș)|\epsilon|^{-1}\exp(-c|\ln\epsilon|^\kappa) with cc some non-universal positive constant and Îș=1/2\kappa=1/2 a universal exponent. Her analysis has been extended to the case when time-reversal symmetry is present (chiral orthogonal universality class) for which the same exponent Îș=1/2\kappa=1/2 was predicted. Motrunich \textit{et al.} [O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B \textbf{65}, 064206 (2001)] have argued that the exponent Îș=1/2\kappa=1/2 does not apply to the typical density of states in the chiral orthogonal universality class. They predict that Îș=2/3\kappa=2/3 instead. We confirm the analysis of Motrunich \textit{et al.} within a field theory for two flavors of Dirac fermions subjected to two types of weak uncorrelated random potentials: a purely imaginary vector potential and a complex valued mass potential. This model is believed to belong to the chiral orthogonal universality class. Our calculation relies in an essential way on the existence of infinitely many local composite operators with negative anomalous scaling dimensions.Comment: 30 pages, final version published in PR

    Functional Renormalization Group and the Field Theory of Disordered Elastic Systems

    Full text link
    We study elastic systems such as interfaces or lattices, pinned by quenched disorder. To escape triviality as a result of ``dimensional reduction'', we use the functional renormalization group. Difficulties arise in the calculation of the renormalization group functions beyond 1-loop order. Even worse, observables such as the 2-point correlation function exhibit the same problem already at 1-loop order. These difficulties are due to the non-analyticity of the renormalized disorder correlator at zero temperature, which is inherent to the physics beyond the Larkin length, characterized by many metastable states. As a result, 2-loop diagrams, which involve derivatives of the disorder correlator at the non-analytic point, are naively "ambiguous''. We examine several routes out of this dilemma, which lead to a unique renormalizable field-theory at 2-loop order. It is also the only theory consistent with the potentiality of the problem. The beta-function differs from previous work and the one at depinning by novel "anomalous terms''. For interfaces and random bond disorder we find a roughness exponent zeta = 0.20829804 epsilon + 0.006858 epsilon^2, epsilon = 4-d. For random field disorder we find zeta = epsilon/3 and compute universal amplitudes to order epsilon^2. For periodic systems we evaluate the universal amplitude of the 2-point function. We also clarify the dependence of universal amplitudes on the boundary conditions at large scale. All predictions are in good agreement with numerical and exact results, and an improvement over one loop. Finally we calculate higher correlation functions, which turn out to be equivalent to those at depinning to leading order in epsilon.Comment: 42 pages, 41 figure

    RPBS: a web resource for structural bioinformatics

    Get PDF
    RPBS (Ressource Parisienne en Bioinformatique Structurale) is a resource dedicated primarily to structural bioinformatics. It is the result of a joint effort by several teams to set up an interface that offers original and powerful methods in the field. As an illustration, we focus here on three such methods uniquely available at RPBS: AUTOMAT for sequence databank scanning, YAKUSA for structure databank scanning and WLOOP for homology loop modelling. The RPBS server can be accessed at and the specific services at

    Spectral thresholding quantum tomography for low rank states

    Get PDF
    The estimation of high dimensional quantum states is an important statistical problem arising in current quantum technology applications. A key example is the tomography of multiple ions states, employed in the validation of state preparation in ion trap experiments (HĂ€ffner et al 2005 Nature 438 643). Since full tomography becomes unfeasible even for a small number of ions, there is a need to investigate lower dimensional statistical models which capture prior information about the state, and to devise estimation methods tailored to such models. In this paper we propose several new methods aimed at the efficient estimation of low rank states and analyse their performance for multiple ions tomography. All methods consist in first computing the least squares estimator, followed by its truncation to an appropriately chosen smaller rank. The latter is done by setting eigenvalues below a certain 'noise level' to zero, while keeping the rest unchanged, or normalizing them appropriately. We show that (up to logarithmic factors in the space dimension) the mean square error of the resulting estimators scales as where r is the rank, is the dimension of the Hilbert space, and N is the number of quantum samples. Furthermore we establish a lower bound for the asymptotic minimax risk which shows that the above scaling is optimal. The performance of the estimators is analysed in an extensive simulations study, with emphasis on the dependence on the state rank, and the number of measurement repetitions. We find that all estimators perform significantly better than the least squares, with the 'physical estimator' (which is a bona fide density matrix) slightly outperforming the other estimators
    • 

    corecore