3,647 research outputs found

    Simulation of hydrogenated graphene Field-Effect Transistors through a multiscale approach

    Full text link
    In this work, we present a performance analysis of Field Effect Transistors based on recently fabricated 100% hydrogenated graphene (the so-called graphane) and theoretically predicted semi-hydrogenated graphene (i.e. graphone). The approach is based on accurate calculations of the energy bands by means of GW approximation, subsequently fitted with a three-nearest neighbor (3NN) sp3 tight-binding Hamiltonian, and finally used to compute ballistic transport in transistors based on functionalized graphene. Due to the large energy gap, the proposed devices have many of the advantages provided by one-dimensional graphene nanoribbon FETs, such as large Ion and Ion/Ioff ratios, reduced band-to-band tunneling, without the corresponding disadvantages in terms of prohibitive lithography and patterning requirements for circuit integration

    Deformed vortices in (4+1)-dimensional Einstein-Yang-Mills theory

    Full text link
    We study vortex-type solutions in a (4+1)-dimensional Einstein-Yang-Mills-SU(2) model. Assuming all fields to be independent on the extra coordinate, these solutions correspond in a four dimensional picture to axially symmetric multimonopoles, respectively monopole-antimonopole solutions. By boosting the five dimensional purely magnetic solutions we find new configurations which in four dimensions represents rotating regular nonabelian solutions with an additional electric charge.Comment: 11 pages, including 5 eps files; reference added, discussion extended; typos correcte

    Spherically symmetric Yang-Mills solutions in a (4+n)- dimensional space-time

    Full text link
    We consider the Einstein-Yang-Mills Lagrangian in a (4+n)-dimensional space-time. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric Ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant exist. We construct the analytic solutions which fulfill this conditions for arbitrary n, namely the Einstein-Maxwell-dilaton solutions. We also present generic solutions of the effective 4-dimensional Einstein-Yang-Mills-Higgs-dilaton model, which possesses n Higgs triplets coupled in a specific way to n independent dilaton fields. These solutions are the abelian Einstein-Maxwell- dilaton solutions and analytic non-abelian solutions, which have diverging Higgs fields. In addition, we construct numerically asymptotically flat and finite energy solutions for n=2.Comment: 15 Latex pages, 4 eps figures; v2: discussion of results revisite

    Spherically symmetric solutions of a (4+n)-dimensional Einstein-Yang-Mills model with cosmological constant

    Full text link
    We construct solutions of an Einstein-Yang-Mills system including a cosmological constant in 4+n space-time dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric Ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge fields exist. We give the analytic solutions available in this model. These are ``embedded'' abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective 4-dimensional Einstein-Yang-Mills-Higgs-dilaton model, where the higher dimensional cosmological constant induces a Liouville-type potential. The solutions are non-abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.Comment: 13 Tex-pages, 2 eps-figures; discussions changed; some points clarifie

    Results on Multiple Coulomb Scattering from 12 and 20 GeV electrons on Carbon targets

    Get PDF
    Multiple scattering effects of 12 and 20 GeV electrons on 8 and 20 mm thickness carbon targets have been studied with high-resolution silicon microstrip detectors of the UA9 apparatus at the H8 line at CERN. Comparison of the scattering angle between data and GEANT4 simulation shows excellent agreement in the core of the distributions leaving some residual disagreement in the tails.Comment: 14 pages, 16 figures. Updated to match published versio

    Holographic superfluids as duals of rotating black strings

    Full text link
    We study the breaking of an Abelian symmetry close to the horizon of an uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary theory living on R^2 x S^1 has no rotation, but a magnetic field that is aligned with the axis of the black string. This boundary theory decribes non-rotating (2+1)-dimensional holographic superfluids with non-vanishing superfluid velocity. We study these superfluids in the grand canonical ensemble and show that for sufficiently small angular momentum of the dual black string and sufficiently small superfluid velocity the phase transition is 2nd order, while it becomes 1st order for larger superfluid velocity. Moreover, we observe that the phase transition is always 1st order above a critical value of the angular momentum independent of the choice of the superfluid velocity.Comment: 9 pages including 5 figures: v2: 12 pages including 7 figures; 2 figures added, discussion on free energy added; accepted for publication in JHE

    Inflammatory and antioxidant pattern unbalance in "clopidogrel-resistant" patients during acute coronary syndrome.

    Get PDF
    Background. In acute coronary syndrome (ACS), inflammation and redox response are associated with increased residual platelet reactivity (RPR) on clopidogrel therapy. We investigated whether clopidogrel interaction affects platelet function and modulates factors related to inflammation and oxidation in ACS patients differently responding to clopidogrel. Material andMethods. Platelet aggregation was measured in 29 ACS patients on dual (aspirin/clopidogrel) antiplatelet therapy. Nonresponders (NR) were defined as RPR ≥70% by ADP. Several inflammatory and redox parameters were assayed and platelet proteome was determined. Results. Eight (28%) out of 29 ACS patients resulted NR to clopidogrel. At 24 hours, the levels of Th2-type cytokines IL-4, IFN, andMCP-1 were higher in NR, while blood GSH (r-GSHbl) levels were lower in NR than responders (R). Proteomic analysis evidenced an upregulated level of platelet adhesion molecule, CD226, and a downregulation of the antioxidant peroxiredoxin-4. In R patients the proinflammatory cytokine IL-6 decreased, while the anti-inflammatory cytokine IL-1Ra increased. Conclusions. In patients with high RPR on clopidogrel therapy, an unbalance of inflammatory factors, platelet adhesion molecules, and circulatory and platelet antioxidantmolecules was observed during the acute phase. Proinflammatory milieu persists in nonresponders for a long time after the acute event while antioxidant blood factors tend to conform to normal responsiveness

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE
    • …
    corecore