18 research outputs found

    Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSC) are multipotent cells which can differentiate along osteogenic, chondrogenic, and adipogenic lineages. The present study was designed to investigate the influence of mechanical force as a specific physiological stress on the differentiation of (MSC) to osteoblast-like cells. METHODS: Human MSC were cultured in osteoinductive medium with or without cyclic uniaxial mechanical stimulation (2000 μstrain, 200 cycles per day, 1 Hz). Cultured cells were analysed for expression of collagen type I, osteocalcin, osteonectin, and CD90. To evaluate the biomineral formation the content of bound calcium in the cultures was determined. RESULTS: After 14 days in culture immunfluorescence staining revealed enhancement of collagen type I and osteonectin expression in response to mechanical stimulation. In contrast, mechanically stimulated cultures stained negative for CD90. In stimulated and unstimulated cultures an increase in the calcium content over time was observed. After 21 days in culture the calcium content in mechanical stimulated cultures was significantly higher compared to unstimulated control cultures. CONCLUSION: These results demonstrate the influence of mechanical force on the differentiation of human MSC into osteoblast-like cells in vitro. While significant enhancement of the biomineral formation by mechanical stimulation is not detected before 21 days, effects on the extracellular matrix became already obvious after 14 days. The decrease of CD90 expression in mechanically stimulated cultures compared to unstimulated control cultures suggests that CD90 is only transiently expressed expression during the differentiation of MSC to osteoblast-like cells in culture

    Mechanics rules cell biology

    Get PDF
    Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction

    Development and evaluation of a brine mining equipment monitoring and control system using wireless sensor network and fuzzy logic

    No full text
    The brine mining equipment failure can seriously affect the productivity of the salt lake chemical industry. Traditional monitoring and controlling method mainly depends on manned patrol that is offline and ineffective. With the rapid advancement of information and communication technologies, it is possible to develop more efficient online systems that can automatically monitor and control the mining equipment and to prevent equipment damage from mechanical failure and unexpected interruptions with severe consequences. This paper describes a Wireless Monitoring and feedback fuzzy logic-based Control System (WMCS) for monitoring and controlling the brine well mining equipment. Based on the field investigations and requirement analysis, the WMCS is designed as a Wireless Sensors Network module, a feedback fuzzy logic controller, and a remote communication module together with database platform. The system was deployed in existing brine wells at demonstration area without any physical modification. The system test and evaluation results show that WMCS enables to track equipment performance and collect real-time data from the spot, provides decision support to help workers overhaul the equipment and follows the deployment of fuzzy control in conjunction with remote data logging. It proved that WMCS acts as a tool to improve management efficiency for mining equipment and underground brine resources
    corecore