17,264 research outputs found

    Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    Full text link
    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of 2 during the simulation period. Particle acceleration via these mechanisms occurred when the criteria for Weibel instability were satisfied.Comment: Revised for Phys. Rev. Lett. Please see publised version for best graphic

    On the propagation of a two-dimensional viscous density current under surface waves

    Get PDF
    This study aims to develop an asymptotic theory for the slow spreading of a thin layer of viscous immiscible dense liquid on the bottom of a waterway under the combined effects of surface waves and density current. By virtue of the sharply different length and time scales (wave periodic excitation being effective at fast scales, while gravity and streaming currents at slow scales), a multiple-scale perturbation analysis is conducted. Evolution equations are deduced for the local and global profile distributions of the dense liquid layer as functions of the slow-time variables. When reflected waves are present, the balance between gravity and streaming will result, on a time scale one order of magnitude longer than the wave period, in an undulating water/liquid interface whose displacement amplitude is much smaller than the thickness of the dense liquid layer. On the global scale, the streaming current can predominate and drive the dense liquid to propagate with a distinct pattern in the direction of the surface waves. © 2002 American Institute of Physics.published_or_final_versio

    Ferromagnetic Convection in a Heterogeneous Darcy Porous Medium Using a Local Thermal Non-equilibrium (LTNE) Model

    Get PDF
    The combined effects of vertical heterogeneity of permeability and local thermal non-equilibrium (LTNE) on the onset of ferromagnetic convection in a ferrofluid saturated Darcy porous medium in the presence of a uniform vertical magnetic field are investigated. A two-field model for temperature representing the solid and fluid phases separately is used. The eigenvalue problem is solved numerically using the Galerkin method for different forms of permeability heterogeneity function Γ(z) and their effect on the stability characteristics of the system has been analyzed in detail. It is observed that the general quadratic variation of Γ(z) with depth has more destabilizing effect on the system when compared to the homogeneous porous medium case. Besides, the influence of LTNE and magnetic parameters on the criterion for the onset of ferromagnetic convection is also assessed

    Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1-1.1 with a Highly Ordered Magnetic Field

    Get PDF
    Pulsar wind nebulae (PWNe) are suggested to be acceleration sites of cosmic rays in the Galaxy. While the magnetic field plays an important role in the acceleration process, previous observations of magnetic field configurations of PWNe are rare, particularly for evolved systems. We present a radio polarization study of the "Snail" PWN inside the supernova remnant G327.1-1.1 using the Australia Telescope Compact Array. This PWN is believed to have been recently crushed by the supernova (SN) reverse shock. The radio morphology is composed of a main circular body with a finger-like protrusion. We detected a strong linear polarization signal from the emission, which reflects a highly ordered magnetic field in the PWN and is in contrast to the turbulent environment with a tangled magnetic field generally expected from hydrodynamical simulations. This could suggest that the characteristic turbulence scale is larger than the radio beam size. We built a toy model to explore this possibility, and found that a simulated PWN with a turbulence scale of about one-eighth to one-sixth of the nebula radius and a pulsar wind filling factor of 50--75% provides the best match to observations. This implies substantial mixing between the SN ejecta and pulsar wind material in this system.Comment: 13 pages, 10 figures, Accepted for publication in Ap

    Deep Chandra Observation of the Pulsar Wind Nebula Powered by the Pulsar J1846-0258 in the Supernova Remnant Kes 75

    Full text link
    We present the results of detailed spatial and spectral analysis of the pulsar wind nebula (PWN) in supernova remnant Kes 75 (G29.7-0.3) using a deep exposure with Chandra X-ray observatory. The PWN shows a complex morphology with clear axisymmetric structure. We identified a one-sided jet and two bright clumps aligned with the overall nebular elongation, and an arc-like feature perpendicular to the jet direction. Further spatial modeling with a torus and jet model indicates a position angle 207\arcdeg\pm8 \arcdeg for the PWN symmetry axis. We interpret the arc as an equatorial torus or wisp and the clumps could be shock interaction between the jets and the surrounding medium. The lack of any observable counter jet implies a flow velocity larger than 0.4c. Comparing to an archival observation 6 years earlier, some small-scale features in the PWN demonstrate strong variability: the flux of the inner jet doubles and the peak of the northern clump broadens and shifts 2" outward. In addition, the pulsar flux increases by 6 times, showing substantial spectral softening from Γ\Gamma=1.1 to 1.9 and an emerging thermal component which was not observed in the first epoch. The changes in the pulsar spectrum are likely related to the magnetar-like bursts of the pulsar that occurred 7 days before the Chandra observation, as recently reported from RXTE observations.Comment: Accepted by ApJ, 8 figures, some of them have been scaled down in resolutio

    Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    Get PDF
    We report the results from a detailed γ\gamma-ray investigation in the field of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with 6.96.9 years of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the "Region A" of the TeV feature. Its γ\gamma-ray spectrum can be modeled with a single power-law with a photon index of Γ2.5\Gamma\sim2.5 from few hundreds MeV to TeV. Moreover, an elongated feature, which extends from "Region A" toward northwest for 1.3\sim1.3^{\circ}, is discovered for the first time. The orientation of this feature is similar to that of a large scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ\gamma-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Quantum Dot in 2D Topological Insulator: The Two-channel Kondo Fixed Point

    Full text link
    In this work, a quantum dot couples to two helical edge states of a 2D topological insulator through weak tunnelings is studied. We show that if the electron interactions on the edge states are repulsive, with Luttinger liquid parameter K<1 K < 1 , the system flows to a stable two-channel fixed point at low temperatures. This is in contrast to the case of a quantum dot couples to two Luttinger liquid leads. In the latter case, a strong electron-electron repulsion is needed, with K<1/2 K<1/2 , to reach the two-channel fixed point. This two-channel fixed point is described by a boundary Sine-Gordon Hamiltonian with a KK dependent boundary term. The impurity entropy at zero temperature is shown to be ln2K \ln\sqrt{2K} . The impurity specific heat is CT2K2C \propto T^{\frac{2}{K}-2} when 2/3<K<1 2/3 < K < 1 , and CT C \propto T when K<2/3 K<2/3. We also show that the linear conductance across the two helical edges has non-trivial temperature dependence as a result of the renormalization group flow.Comment: 4+\epsilon page

    Exploring Food Detection using CNNs

    Full text link
    One of the most common critical factors directly related to the cause of a chronic disease is unhealthy diet consumption. In this sense, building an automatic system for food analysis could allow a better understanding of the nutritional information with respect to the food eaten and thus it could help in taking corrective actions in order to consume a better diet. The Computer Vision community has focused its efforts on several areas involved in the visual food analysis such as: food detection, food recognition, food localization, portion estimation, among others. For food detection, the best results evidenced in the state of the art were obtained using Convolutional Neural Network. However, the results of all these different approaches were gotten on different datasets and therefore are not directly comparable. This article proposes an overview of the last advances on food detection and an optimal model based on GoogLeNet Convolutional Neural Network method, principal component analysis, and a support vector machine that outperforms the state of the art on two public food/non-food datasets

    Photonic Clusters

    Full text link
    We show through rigorous calculations that dielectric microspheres can be organized by an incident electromagnetic plane wave into stable cluster configurations, which we call photonic molecules. The long-range optical binding force arises from multiple scattering between the spheres. A photonic molecule can exhibit a multiplicity of distinct geometries, including quasicrystal-like configurations, with exotic dynamics. Linear stability analysis and dynamical simulations show that the equilibrium configurations can correspond with either stable or a type of quasi-stable states exhibiting periodic particle motion in the presence of frictional dissipation.Comment: 4 pages, 3 figure

    Electron-Beam Driven Relaxation Oscillations in Ferroelectric Nanodisks

    Get PDF
    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate (PZT) nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems.Comment: 5 pages, 2 figure
    corecore