15 research outputs found

    Challenges regarding thin film deposition of garnet electrolytes for all-solid-state lithium batteries with high energy density

    No full text
    In this work, we studied the deposition of garnet electrolyte thin films in order to realize an all-solid-state battery with high energy density. Therefore, in a first step we investigated the stability of the garnet Li5La3Ta2O12 with the spinel LiCoMnO4 in order to determine the temperature window for a successful thin film deposition on high-voltage spinels. A mixture of both materials showed a thermal stability up to 600 °C, so that all-solid-state batteries could be realized when the electrolyte is applied at a low deposition temperature. The second part of the work was the thin film deposition of Li5La3Ta2O12 by a sputter deposition process. When a stoichiometric Li5La3Ta2O12 sputter target was used, the surface of the target showed a depletion of lithium after several depositions, which leads to decreasing Li content in the thin films. In order to compensate the lithium loss we enriched the target with LiOH∙

    Design optimization of fiber amplifiers exposed to high gamma-radiation doses

    No full text
    Fiber lasers entered numerous applications due to their high efficiency and superior stability. Er-doped fiber lasers emitting around 1550 nm optical wavelength are capable to produce hundreds of Watts [1] and Millijoule pulse energy [2,3]

    Bulk and grain boundary Li-diffusion in dense LiMn2O4 pellets by means of isotope exchange and ToF-SIMS analysis

    No full text
    Lithium diffusion in LiMn2O4 pellets is studied by means of isotope exchange and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). A 6Li-enriched film deposited by Pulsed Laser Deposition (PLD) on a dense LiMn2O4 pellet with natural abundance of lithium isotopes is used to study the tracer diffusion of lithium. The measured profiles are analyzed by numerical models describing the 6Li tracer diffusion from the film into the pellet. Experiments in the Harrison type B regime of diffusion kinetics allow for the distinction and simultaneous determination of bulk and grain boundary diffusion coefficients. Changing the experimental conditions to reach Harrison type A behavior yields effective diffusion coefficients for lithium tracer diffusion in LiMn2O4. Activation energies for bulk and grain boundary diffusion were obtained from experiments at different temperatures. Our values are critically compared to previous studies

    Ca2+-activated Cl− currents are dispensable for olfaction

    No full text
    International audienceCanonical olfactory signal transduction involves the activation of cAMP-activated cation channels that depolarize the cilia of receptor neurons and raise intracellular calcium. Calcium then activates Cl- currents that may be up to 10-fold larger than cation currents and are believed to powerfully amplify the response. We now unambiguously identified Ano2 (Anoctamin2, TMEM16B) as the long-sought ciliary Ca++-activated Cl- channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and in the vomeronasal organ (VNO) that additionally expresses the related Ano1 channel. Disruption of Ano2 in mice virtually abolished Ca++-activated Cl- currents in the MOE and VNO. Surprisingly, Ano2 disruption reduced fluid phase electroolfactogram responses by only ~40%, did not change air phase electroolfactograms, and did not reduce performance in olfactory behavioral tasks. In contrast to the current view, cyclic nucleotide-gated cation channels do not need a boost by Cl- channels to achieve near-physiological levels of olfaction
    corecore