100 research outputs found

    Energy-Sensitive and "Classical-like" Distances Between Quantum States

    Get PDF
    We introduce the concept of the ``polarized'' distance, which distinguishes the orthogonal states with different energies. We also give new inequalities for the known Hilbert-Schmidt distance between neighbouring states and express this distance in terms of the quasiprobability distributions and the normally ordered moments. Besides, we discuss the distance problem in the framework of the recently proposed ``classical-like'' formulation of quantum mechanics, based on the symplectic tomography scheme. The examples of the Fock, coherent, ``Schroedinger cats,'' squeezed, phase, and thermal states are considered.Comment: 23 pages, LaTex, 2 eps figures, to appear in Physica Script

    SU(1,1) symmetry of multimode squeezed states

    Full text link
    We show that a class of multimode optical transformations that employ linear optics plus two-mode squeezing can be expressed as SU(1,1) operators. These operations are relevant to state-of-the-art continuous variable quantum information experiments including quantum state sharing, quantum teleportation, and multipartite entangled states. Using this SU(1,1) description of these transformations, we obtain a new basis for such transformations that lies in a useful representation of this group and lies outside the often-used restriction to Gaussian states. We analyze this basis, show its application to a class of transformations, and discuss its extension to more general quantum optical networks

    On the squeezed states for n observables

    Full text link
    Three basic properties (eigenstate, orbit and intelligence) of the canonical squeezed states (SS) are extended to the case of arbitrary n observables. The SS for n observables X_i can be constructed as eigenstates of their linear complex combinations or as states which minimize the Robertson uncertainty relation. When X_i close a Lie algebra L the generalized SS could also be introduced as orbit of Aut(L^C). It is shown that for the nilpotent algebra h_N the three generalizations are equivalent. For the simple su(1,1) the family of eigenstates of uK_- + vK_+ (K_\pm being lowering and raising operators) is a family of ideal K_1-K_2 SS, but it cannot be represented as an Aut(su^C(1,1)) orbit although the SU(1,1) group related coherent states (CS) with symmetry are contained in it. Eigenstates |z,u,v,w;k> of general combination uK_- + vK_+ + wK_3 of the three generators K_j of SU(1,1) in the representations with Bargman index k = 1/2,1, ..., and k = 1/4,3/4 are constructed and discussed in greater detail. These are ideal SS for K_{1,2,3}. In the case of the one mode realization of su(1,1) the nonclassical properties (sub-Poissonian statistics, quadrature squeezing) of the generalized even CS |z,u,v;+> are demonstrated. The states |z,u,v,w;k=1/4,3/4> can exhibit strong both linear and quadratic squeezing.Comment: 25 pages, LaTex, 4 .pic and .ps figures. Improvements in text, discussion on generation scheme added. To appear in Phys. Script

    Analytic representations based on SU(1,1) coherent states and their applications

    Get PDF
    We consider two analytic representations of the SU(1,1) Lie group: the representation in the unit disk based on the SU(1,1) Perelomov coherent states and the Barut-Girardello representation based on the eigenstates of the SU(1,1) lowering generator. We show that these representations are related through a Laplace transform. A ``weak'' resolution of the identity in terms of the Perelomov SU(1,1) coherent states is presented which is valid even when the Bargmann index kk is smaller than one half. Various applications of these results in the context of the two-photon realization of SU(1,1) in quantum optics are also discussed.Comment: LaTeX, 15 pages, no figures, to appear in J. Phys. A. More information on http://www.technion.ac.il/~brif/science.htm

    Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis

    Get PDF
    We present results from two four-frequency observations centered near the stars Sigma Hercules and Iota Draconis during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x 0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a 0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are inconsistent with thermal emission from known interstellar dust populations. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structures. If the observed structures are attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25', then the most probable values are DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB = (3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure

    Generalized thermo vacuum state derived by the partial trace method

    Full text link
    By virtue of the technique of integration within an ordered product (IWOP) of operators we present a new approach for deriving generalized thermo vacuum state which is simpler in form that the result by using the Umezawa-Takahashi approach, in this way the thermo field dynamics can be developed. Applications of the new state are discussed.Comment: 5 pages, no figure, revtex

    Continuous photodetection model: quantum jump engineering and hints for experimental verification

    Get PDF
    We examine some aspects of the continuous photodetection model for photocounting processes in cavities. First, we work out a microscopic model that describes the field-detector interaction and deduce a general expression for the Quantum Jump Superoperator (QJS), that shapes the detector's post-action on the field upon a detection. We show that in particular cases our model recovers the QJSs previously proposed ad hoc in the literature and point out that by adjusting the detector parameters one can engineer QJSs. Then we set up schemes for experimental verification of the model. By taking into account the ubiquitous non-idealities, we show that by measuring the lower photocounts moments and the mean waiting time one can check which QJS better describes the photocounting phenomenon.Comment: 12 pages, 7 figures. Contribution to the conference Quantum Optics III, Pucon - Chile, November 27-30, 200

    A General Theory of Phase-Space Quasiprobability Distributions

    Full text link
    We present a general theory of quasiprobability distributions on phase spaces of quantum systems whose dynamical symmetry groups are (finite-dimensional) Lie groups. The family of distributions on a phase space is postulated to satisfy the Stratonovich-Weyl correspondence with a generalized traciality condition. The corresponding family of the Stratonovich-Weyl kernels is constructed explicitly. In the presented theory we use the concept of the generalized coherent states, that brings physical insight into the mathematical formalism.Comment: REVTeX, 4 pages. More information on http://www.technion.ac.il/~brif/science.htm

    Nonlinear dynamics of semiconductor lasers with active optical feedback

    Get PDF
    An in-depth theoretical as well as experimental analysis of the nonlinear dynamics in semiconductor lasers with active optical feedback is presented. Use of a monolithically integrated multi-section device of sub-mm total length provides access to the short-cavity regime. By introducing an amplifier section as novel feature, phase and strength of the feedback can be separately tuned. In this way, the number of modes involved in the laser action can be adjusted. We predict and observe specific dynamical scenarios. Bifurcations mediate various transitions in the device output, from single-mode steady-state to self-pulsation and between different kinds of self-pulsations, reaching eventually chaotic behavior in the multi-mode limit
    corecore