7 research outputs found

    Living and training at 825 m for 8 weeks supplemented with intermittent hypoxic training at 3,000 m improves blood parameters and running performance

    No full text
    We aimed to investigate the effect of an 8-week low-altitude training block supplemented with intermittent hypoxic training, on blood and performance parameters in soccer players. Forty university-level male soccer players were separated into altitude (n = 20, 825 m) or sea-level (n = 20, 125 m) groups. Before (1–2 days ago) and after (1 and 14 days later) training, players were asked to give a resting venous blood sample and complete a series of performance tests. Compared with sea level, the altitude group increased erythropoietin, red blood cell (RBC) count, and hematocrit 1 day after training (42.6 ± 24.0%, 1.8 ± 1.3%, 1.4 ± 1.1%, mean ± 95% confidence limits (CL), respectively). By 14 days after training, only RBC count and hemoglobin were substantially higher in the altitude compared with the sea-level group (3.2 ± 1.8%, 2.9 ± 2.1% respectively). Compared with sea level, the altitude group 1–2 days after training improved their 50-m (22.9 ± 1.4%) and 2,800-m (22.9 ± 4.4%) run times and demonstrated a higher maximal aerobic speed (4.7 ± 7.4%). These performance changes remained at 14 days after training with the addition of a likely higher estimated VO2max in the altitude compared with the sea-level group (3.2 ± 3.0%). Eight weeks of low-altitude training, supplemented with regular bouts of intermittent hypoxic training at higher altitude, produced beneficial performance improvements in team-sport athletes, which may increase the viability of such training to coaches and players that cannot access more traditional high altitude venues

    Quercetin Enhances Endurance Capacity via Antioxidant Activity and Size of Muscle Fibre Type 1

    No full text
    This study aimed to examine effects of quercetin on 1) endurance capacity 2) malondialdehyde (MDA) and superoxide dismutase (SOD) activity in skeletal muscle and 3) muscle fibre density and size in mice after an intense exercise. There were 5 groups: control, vitamin C (250 mg/kg body weight), quercetin 150, 300, and 450 mg/kg body weight respectively once a day for 28 days. Endurance capacity was measured by exhaustive swimming exercise test which was done 24-h after swimming at high intensity. Then muscles were analyzed for MDA, SOD activity, and muscle fibre density and size. After the 28-day treatment, endurance time in vitamin C and quercetin treated groups at dose of 150 mg/kg body weight were longer than the vehicle group (

    Quercetin Enhances Endurance Capacity via Antioxidant Activity and Size of Muscle Fibre Type 1

    No full text
    This study aimed to examine effects of quercetin on 1) endurance capacity 2) malondialdehyde (MDA) and superoxide dismutase (SOD) activity in skeletal muscle and 3) muscle fibre density and size in mice after an intense exercise. There were 5 groups: control, vitamin C (250 mg/kg body weight), quercetin 150, 300, and 450 mg/kg body weight respectively once a day for 28 days. Endurance capacity was measured by exhaustive swimming exercise test which was done 24-h after swimming at high intensity. Then muscles were analyzed for MDA, SOD activity, and muscle fibre density and size. After the 28-day treatment, endurance time in vitamin C and quercetin treated groups at dose of 150 mg/kg body weight were longer than the vehicle group (

    Physical activity and sedentary behaviour research in Thailand: a systematic scoping review

    No full text
    corecore