72 research outputs found

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    On the correlation between electronic intramolecular delocalization and Au-S bonding strength of ruthenium tetraammine SAMs

    Full text link
    Trans-[Ru(L)(NH3)4(L’)](PF6)n type complexes, where L = 4-cyanopyridine (CNpy), NCS-, CN-, and L’ = CNpy, 1,4-dithiane (1,4-dt), 4-mercaptopyridine (pyS) and thionicotinamide (tna), were synthesized and characterized. SAMs on gold of the complexes containing sulfur were studied by reductive desorption and SERS spectroscopy. Depending on the nature of L’, the withdrawing capability of the CNpy ligand is strong enough to partially oxidize the ruthenium atom and, as a consequence, delocalize the s electronic density from the trans located ligand. The reductive desorption results showed that the stability of the SAMs is directly related to this effect

    Let’s not forget tautomers

    Get PDF
    A compound exhibits tautomerism if it can be represented by two structures that are related by an intramolecular movement of hydrogen from one atom to another. The different tautomers of a molecule usually have different molecular fingerprints, hydrophobicities and pKa’s as well as different 3D shape and electrostatic properties; additionally, proteins frequently preferentially bind a tautomer that is present in low abundance in water. As a result, the proper treatment of molecules that can tautomerize, ~25% of a database, is a challenge for every aspect of computer-aided molecular design. Library design that focuses on molecular similarity or diversity might inadvertently include similar molecules that happen to be encoded as different tautomers. Physical property measurements might not establish the properties of individual tautomers with the result that algorithms based on these measurements may be less accurate for molecules that can tautomerize—this problem influences the accuracy of filtering for library design and also traditional QSAR. Any 2D or 3D QSAR analysis must involve the decision of if or how to adjust the observed Ki or IC50 for the tautomerization equilibria. QSARs and recursive partitioning methods also involve the decision as to which tautomer(s) to use to calculate the molecular descriptors. Docking virtual screening must involve the decision as to which tautomers to include in the docking and how to account for tautomerization in the scoring. All of these decisions are more difficult because there is no extensive database of measured tautomeric ratios in both water and non-aqueous solvents and there is no consensus as to the best computational method to calculate tautomeric ratios in different environments

    The antiresonance Raman effect of the RuO42− ion

    Full text link
    corecore