39,620 research outputs found

    Full counting statistics of spin transfer through ultrasmall quantum dots

    Full text link
    We analyze the spin-resolved full counting statistics of electron transfer through an ultrasmall quantum dot coupled to metallic electrodes. Modelling the setup by the Anderson Hamiltonian, we explicitly take into account the onsite Coulomb repulsion UU. We calculate the cumulant generating function for the probability to transfer a certain number of electrons with a preselected spin orientation during a fixed time interval. With the cumulant generating function at hand we are then able to calculate the spin current correlations which are of outmost importance in the emerging field of spintronics. We confirm the existing results for the charge statistics and report the discovery of the new type of correlation between the spin-up and -down polarized electrons flows, which has a potential to become a powerful new instrument for the investigation of the Kondo effect in nanostructures.Comment: 5 pages, 1 figur

    A search for transit timing variation

    Full text link
    Photometric follow-ups of transiting exoplanets (TEPs) may lead to discoveries of additional, less massive bodies in extrasolar systems. This is possible by detecting and then analysing variations in transit timing of transiting exoplanets. In 2009 we launched an international observing campaign, the aim of which is to detect and characterise signals of transit timing variation (TTV) in selected TEPs. The programme is realised by collecting data from 0.6--2.2-m telescopes spread worldwide at different longitudes. We present our observing strategy and summarise first results for WASP-3b with evidence for a 15 Earth-mass perturber in an outer 2:1 orbital resonance.Comment: Poster contribution to Detection and Dynamics of Transiting Exoplanets (Haute Provence Observatory Colloquium, 23-27 August 2010

    The Hercules-Lyra Association revisited New age estimation and multiplicity study

    Full text link
    The Her-Lyr assoc., a nearby young MG, contains a few tens of ZAMS stars of SpT F to M. The existence and the properties of the Her-Lyr assoc. are controversial and discussed in the literature. The present work reassesses properties and the member list of Her-Lyr assoc., based on kinematics and age. Many objects form multiple systems or have low-mass companions and so we need to account for multiplicity. We use our own new imaging obs. and archival data to identify multiple systems. The colors and magnitudes of kinematic candidates are compared to isochrones. We derive further information on the age based on Li depletion, rotation, and coronal and chromospheric activity. A set of canonical members is identified to infer mean properties. Membership criteria are derived from the mean properties and used to discard non-members. The candidates selected from the literature belong to 35 stellar systems, 42.9% of which are multiple. Four multiple systems are confirmed in this work by common proper motion. An orbital solution is presented for the binary system HH Leo B and C. Indeed, a group of candidates displays signatures of youth. 7 canonical members are identified. The distribution of EWLi of canonical Her-Lyr members is spread widely and is similar to that of the Pleiades and the UMa group. Gyrochronology gives an age of 257+-46 Myr which is in between the ages of the Pleiades and the Ursa Major group. The measures of chromospheric and coronal activity support the young age. Four membership criteria are presented based on kinematics, EWLi, chromospheric activity, and gyro. age. In total, 11 stars are identified as certain members including co-moving objects plus additional 23 possible members while 14 candidates are doubtful or can be rejected. A comparison to the mass function, however, indicates the presence of a large number of additional unidentified low-mass members.Comment: 19 pages 16 figure

    Hanbury-Brown-Twiss correlations and noise in the charge transfer statistics through a multiterminal Kondo dot

    Full text link
    We analyze the full counting statistics of charge transfer through a quantum dot in the Kondo regime, when coupled to an arbitrary number of terminals N. At the unitary Kondo fixed point and for N>2 we recover distinct anticorrelations of currents in concurring transport channels, which are related to the fermionic Hanbury Brown and Twiss (HBT) antibunching. This effect weakens as one moves away from the fixed point. Furthermore, we identify a special class of current correlations that are due entirely to the virtual polarization of the Kondo singlet. These can be used for extracting information on the parameters of the underlying Fermi-liquid model.Comment: 5 page
    • …
    corecore