17 research outputs found

    Magnon-driven quantum-dot heat engine

    Full text link
    We investigate a heat- to charge-current converter consisting of a single-level quantum dot coupled to two ferromagnetic metals and one ferromagnetic insulator held at different temperatures. We demonstrate that this nano engine can act as an optimal heat to spin-polarized charge current converter in an antiparallel geometry, while it acts as a heat to pure spin current converter in the parallel case. We discuss the maximal output power of the device and its efficiency.Comment: 6 pages, 4 figures, published version, selected as Editor's choic

    Effects of noise reduction on AM and FM perception

    No full text
    info:eu-repo/semantics/publishe

    Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently

    Get PDF
    The neural mechanisms of pitch coding have been debated for more than a century. The two main mechanisms are coding based on the profiles of neural firing rates across auditory nerve fibers with different characteristic frequencies (place-rate coding), and coding based on the phase-locked temporal pattern of neural firing (temporal coding). Phase locking precision can be partly assessed by recording the frequency-following response (FFR), a scalp-recorded electrophysiological response that reflects synchronous activity in subcortical neurons. Although features of the FFR have been widely used as indices of pitch coding acuity, only a handful of studies have directly investigated the relation between the FFR and behavioral pitch judgments. Furthermore, the contribution of degraded neural synchrony (as indexed by the FFR) to the pitch perception impairments of older listeners and those with hearing loss is not well known. Here, the relation between the FFR and pure-tone frequency discrimination was investigated in listeners with a wide range of ages and absolute thresholds, to assess the respective contributions of subcortical neural synchrony and other age-related and hearing loss-related mechanisms to frequency discrimination performance. FFR measures of neural synchrony and absolute thresholds independently contributed to frequency discrimination performance. Age alone, i.e., once the effect of subcortical neural synchrony measures or absolute thresholds had been partialed out, did not contribute to frequency discrimination. Overall, the results suggest that frequency discrimination of pure tones may depend both on phase locking precision and on separate mechanisms affected in hearing loss

    Temporal-envelope reconstruction for hearing-impaired listeners

    No full text
    Recent studies suggest that normal-hearing listeners maintain robust speech intelligibility despite severe degradations of amplitude-modulation (AM) cues, by using temporal-envelope information recovered from broadband frequency-modulation (FM) speech cues at the output of cochlear filters. This study aimed to assess whether cochlear damage affects this capacity to reconstruct temporal-envelope information from FM. This was achieved by measuring the ability of 40 normal-hearing listeners and 41 listeners with mild-to-moderate hearing loss to identify syllables processed to degrade AM cues while leaving FM cues intact within three broad frequency bands spanning the range 65–3,645 Hz. Stimuli were presented at 65 dB SPL for both normal-hearing listeners and hearing-impaired listeners. They were presented as such or amplified using a modified half-gain rule for hearing-impaired listeners. Hearing-impaired listeners showed significantly poorer identification scores than normal-hearing listeners at both presentation levels. However, the deficit shown by hearing-impaired listeners for amplified stimuli was relatively modest. Overall, hearing-impaired data and the results of a simulation study were consistent with a poorer-than-normal ability to reconstruct temporal-envelope information resulting from a broadening of cochlear filters by a factor ranging from 2 to 4. These results suggest that mild-to-moderate cochlear hearing loss has only a modest detrimental effect on peripheral, temporal-envelope reconstruction mechanisms
    corecore