305 research outputs found

    Quantum rainbow scattering at tunable velocities

    Full text link
    Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances

    The nonperturbative closed string tachyon vacuum to high level

    Full text link
    We compute the action of closed bosonic string field theory at quartic order with fields up to level ten. After level four, the value of the potential at the minimum starts oscillating around a nonzero negative value, in contrast with the proposition made in [5]. We try a different truncation scheme in which the value of the potential converges faster with the level. By extrapolating these values, we are able to give a rather precise value for the depth of the potential.Comment: 24 pages. v2: typos corrected, clarified extrapolation in scheme B, and added extrapolated tachyon and dilaton vev's at the end of Section

    On field theory quantization around instantons

    Full text link
    With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a ``theoretical'' framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.Comment: 27 pages, 5 figures, LaTe

    Boundary Conformal Field Theory and Ribbon Graphs: a tool for open/closed string dualities

    Full text link
    We construct and fully characterize a scalar boundary conformal field theory on a triangulated Riemann surface. The results are analyzed from a string theory perspective as tools to deal with open/closed string dualities.Comment: 40 pages, 7 figures; typos correcte

    From Matrices to Strings and Back

    Full text link
    We discuss an explicit construction of a string dual for the Gaussian matrix model. Starting from the matrix model and employing Strebel differential techniques we deduce hints about the structure of the dual string. Next, following these hints a worldheet theory is constructed. The correlators in this string theory are assumed to localize on a finite set of points in the moduli space of Riemann surfaces. To each such point one associates a Feynman diagram contributing to the correlator in the dual matrix model, and thus recasts the worldsheet expression as a sum over Feynman diagrams.Comment: 27 pages, 3 figure

    Exact beta function from the holographic loop equation of large-N QCD_4

    Full text link
    We construct and study a previously defined quantum holographic effective action whose critical equation implies the holographic loop equation of large-N QCD_4 for planar self-avoiding loops in a certain regularization scheme. We extract from the effective action the exact beta function in the given scheme. For the Wilsonean coupling constant the beta function is exacly one loop and the first coefficient agrees with its value in perturbation theory. For the canonical coupling constant the exact beta function has a NSVZ form and the first two coefficients agree with their value in perturbation theory.Comment: 42 pages, latex. The exponent of the Vandermonde determinant in the quantum effective action has been changed, because it has been employed a holomorphic rather than a hermitean resolution of identity in the functional integral. Beta function unchanged. New explanations and references added, typos correcte

    On the worldsheet theories of strings dual to free large N gauge theories

    Full text link
    We analyze in detail some properties of the worldsheet of the closed string theories suggested by Gopakumar to be dual to free large N SU(N) gauge theories (with adjoint matter fields). We use Gopakumar's prescription to translate the computation of space-time correlation functions to worldsheet correlation functions for several classes of Feynman diagrams, by explicit computations of Strebel differentials. We compute the worldsheet operator product expansion in several cases and find that it is consistent with general worldsheet conformal field theory expectations. A peculiar property of the construction is that in several cases the resulting worldsheet correlation functions are non-vanishing only on a sub-space of the moduli space (say, for specific relations between vertex positions). Another strange property we find is that for a conformally invariant space-time theory, the mapping to the worldsheet does not preserve the special conformal symmetries, so that the full conformal group is not realized as a global symmetry on the worldsheet (even though it is, by construction, a symmetry of all integrated correlation functions).Comment: 60 pages, 17 figures, latex. v2: Added references and a minor correctio

    Triangulated Surfaces in Twistor Space: A Kinematical Set up for Open/Closed String Duality

    Get PDF
    We exploit the properties of the three-dimensional hyperbolic space to discuss a simplicial setting for open/closed string duality based on (random) Regge triangulations decorated with null twistorial fields. We explicitly show that the twistorial N-points function, describing Dirichlet correlations over the moduli space of open N-bordered genus g surfaces, is naturally mapped into the Witten-Kontsevich intersection theory over the moduli space of N-pointed closed Riemann surfaces of the same genus. We also discuss various aspects of the geometrical setting which connects this model to PSL(2,C) Chern-Simons theory.Comment: 35 pages, references added, slightly revised introductio

    Cohort-based association study of germline genetic variants with acute and chronic health complications of childhood cancer and its treatment: Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study protocol

    Full text link
    INTRODUCTION: Childhood cancer and its treatment may lead to various health complications. Related impairment in quality of life, excess in deaths and accumulated healthcare costs are relevant. Genetic variations are suggested to contribute to the wide inter-individual variability of complications but have been used only rarely to risk-stratify treatment and follow-up care. This study aims to identify germline genetic variants associated with acute and late complications of childhood cancer. METHODS AND ANALYSIS: The Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study is a nationwide cohort study. Eligible are patients and survivors who were diagnosed with childhood cancers or Langerhans cell histiocytosis before age 21 years, were registered in the Swiss Childhood Cancer Registry (SCCR) since 1976 and have consented to the Paediatric Biobank for Research in Haematology and Oncology, Geneva, host of the national Germline DNA Biobank Switzerland for Childhood Cancer and Blood Disorders (BISKIDS).GECCOS uses demographic and clinical data from the SCCR and the associated Swiss Childhood Cancer Survivor Study. Clinical outcome data consists of organ function testing, health conditions diagnosed by physicians, second primary neoplasms and self-reported information from participants. Germline genetic samples and sequencing data are collected in BISKIDS. We will perform association analyses using primarily whole-exome or whole-genome sequencing to identify genetic variants associated with specified health conditions. We will use clustering and machine-learning techniques and assess multiple health conditions in different models. DISCUSSION: GECCOS will improve knowledge of germline genetic variants associated with childhood cancer-associated health conditions and help to further individualise cancer treatment and follow-up care, potentially resulting in improved efficacy and reduced side effects. ETHICS AND DISSEMINATION: The Geneva Cantonal Commission for Research Ethics has approved the GECCOS study.Research findings will be disseminated through national and international conferences, publications in peer-reviewed journals and in lay language online
    corecore