10,346 research outputs found

    Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis

    Get PDF
    Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities, might exhibit common principles of organisation on some level. Complementing recent investigations of macro-scale brain connectivity in mammals, including humans and macaques, we here present the first large-scale wiring diagram for the forebrain of a bird. Using graph theory, we show that the pigeon telencephalon is organised along similar lines to that of a mammal. Both are modular, small-world networks with a connective core of hub nodes that includes prefrontal-like and hippocampal structures. These hub nodes are, topologically speaking, the most central regions of the pigeon's brain, as well as being the most richly connected, implying a crucial role in information flow. Overall, our analysis suggests that indeed, despite the absence of cortical layers and close to 300 million years of separate evolution, the connectivity of the avian brain conforms to the same organisational principles as the mammalian brain

    Wobbling Motion in Atomic Nuclei with Positive-Gamma Shapes

    Get PDF
    The three moments of inertia associated with the wobbling mode built on the superdeformed states in 163Lu are investigated by means of the cranked shell model plus random phase approximation to the configuration with an aligned quasiparticle. The result indicates that it is crucial to take into account the direct contribution to the moments of inertia from the aligned quasiparticle so as to realize J_x > J_y in positive-gamma shapes. Quenching of the pairing gap cooperates with the alignment effect. The peculiarity of the recently observed 163Lu data is discussed by calculating not only the electromagnetic properties but also the excitation spectra.Comment: 11 pages, 6 figure

    Eucalipto para energia no oeste do Paraná.

    Get PDF
    bitstream/item/215520/1/circ-tec11.pd

    High speed single photon detection in the near-infrared

    Full text link
    InGaAs avalanche photodiodes (APDs) are convenient for single photon detection in the near-infrared (NIR) including the fibre communication bands (1.31/1.55 μ\mum). However, to suppress afterpulse noise due to trapped avalanche charge, they must be gated with MHz repetition frequencies, thereby severely limiting the count rate in NIR applications. Here we show gating frequencies for InGaAs-APDs well beyond 1 GHz. Using a self-differencing technique to sense much weaker avalanches, we reduce drastically afterpulse noise. At 1.25 GHz, we obtain a detection efficiency of 10.8% with an afterpulse probability of 6.16%. In addition, the detector features low jitter (55 ps) and a count rate of 100 MHz

    Slow decay of dynamical correlation functions for nonequilibrium quantum states

    Full text link
    A property of dynamical correlation functions for nonequilibrium states is discussed. We consider arbitrary dimensional quantum spin systems with local interaction and translationally invariant states with nonvanishing current over them. A correlation function between local charge and local Hamiltonian at different spacetime points is shown to exhibit slow decay.Comment: typos correcte
    corecore