19 research outputs found

    Performance of Polymerase Chain Reaction Techniques Detecting Perforin in the Diagnosis of Acute Renal Rejection: A Meta-Analysis

    Get PDF
    BACKGROUND: Studies in the past have shown that perforin expression is up-regulated during acute renal rejection, which provided hopes for a non-invasive and reliable diagnostic method to identify acute rejection. However, a systematic assessment of the value of perforin as a diagnostic marker of acute renal rejection has not been performed. We conducted this meta-analysis to document the diagnostic performance of perforin mRNA detection and to identify potential variables that may affect the performance. METHODOLOGY/PRINCIPAL FINDINGS: Relevant materials that reported the diagnostic performance of perforin mRNA detection in acute renal rejection patients were extracted from electronic databases. After careful evaluation of the studies included in this analysis, the numbers of true positive, true negative, false positive and false negative cases of acute renal rejection identified by perforin mRNA detection were gathered from each data set. The publication year, sample origin, mRNA quantification method and housekeeping gene were also extracted as potential confounding variables. Fourteen studies with a total of 501 renal transplant subjects were included in this meta-analysis. The overall performance of perforin mRNA detection was: pooled sensitivity, 0.83 (95% confidence interval: 0.78 to 0.88); pooled specificity, 0.86 (95% confidence interval: 0.82 to 0.90); diagnostic odds ratio, 28.79 (95% confidence interval: 16.26 to 50.97); and area under the summary receiver operating characteristic curves value, 0.9107Âą0.0174. The univariate analysis of potential variables showed some changes in the diagnostic performance, but none of the differences reached statistical significance. CONCLUSIONS/SIGNIFICANCE: Despite inter-study variability, the test performance of perforin mRNA detected by polymerase chain reaction was consistent under circumstances of methodological changes and demonstrated both sensitivity and specificity in detecting acute renal rejection. These results suggest a great diagnostic potential for perforin mRNA detection as a reliable marker of acute rejection in renal allograft recipients

    Solvent-Controlled Synthesis and Luminescence Properties of Uniform Eu:YVO4 Nanophosphors with Different Morphologies

    No full text
    A facile solvothermal route has been developed for the preparation of tetragonal europium-doped yttrium orthovanadate nanoparticles (Eu:YVO4) and is based on a homogeneous precipitation reaction at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate) and sodium orthovanadate in ethylene glycol or ethylene glycol/water mixtures. The nature of the solvent has a dramatic effect on the morphology and crystallinity of the resulting nanoparticles. Polycrystalline nanoellipsoids (130¿×¿60 nm) were obtained in pure ethylene glycol, whereas quasispherical nanoparticles (100 nm) with monocrystalline character precipitated in ethylene glycol/water (7:3 by volume) mixtures. To explain these different morphological and structural features, the mechanism of particles formation was investigated. The effects of the doping level on the luminescence properties (emission spectra and luminescence lifetime) were also evaluated to find the optimum nanophosphors. Finally, it is shown that the luminescent efficiency of the quasispherical nanoparticles was higher than that of the nanoellipsoids; this can be related to differences in crystallinity and in impurity contentPeer Reviewe

    Osteocalcin Effect on Human β-Cells Mass and Function

    No full text
    The osteoblast-specific hormone osteocalcin (OC) was found to regulate glucose metabolism, fat mass, and β-cell proliferation in mice. Here, we investigate the effect of decarboxylated OC (D-OC) on human β-cell function and mass in culture and in vivo using a Nonobese diabetic-severe combined immunodeficiency mouse model. We found that D-OC at dose ranges from 1.0 to 15 ng/mL significantly augmented insulin content and enhanced human β-cell proliferation of cultured human islets. This was paralleled by increased expression of sulfonylurea receptor protein; a marker of β-cell differentiation and a component of the insulin-secretory apparatus. Moreover, in a Nonobese diabetic-severe combined immunodeficiency mouse model, systemic administration of D-OC at 4.5-ng/h significantly augmented production of human insulin and C-peptide from the grafted human islets. Finally, histological staining of the human islet grafts showed that the improvement in the β-cell function was attributable to an increase in β-cell mass as a result of β-cell proliferation indicated by MKI67 staining together with the increased β-cell number and decreased ι-cell number data obtained using laser scanning cytometry. Our data for the first time show D-OC-enhanced β-cell function in human islets and support future exploitation of D-OC-mediated β-cell regulation for developing useful clinical treatments for patients with diabetes
    corecore