2 research outputs found

    Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics

    Full text link
    Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring, storage and analytics. However, migrating all the data to the cloud is often not feasible due to cost, privacy, and performance concerns. However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics. Edge-enhanced compressive offloading becomes a sustainable solution that allows data to be compressed at the edge and offloaded to the cloud for further analysis, reducing bandwidth consumption and communication latency. The design and implementation of a learning method for discovering compression techniques that offer the best QoS for an application is described. The approach uses a novel modularisation approach that maps features to models and classifies them for a range of Quality of Service (QoS) features. An automated QoS-aware orchestrator has been designed to select the best autoencoder model in real-time for compressive offloading in edge-enhanced clouds based on changing QoS requirements. The orchestrator has been designed to have diagnostic capabilities to search appropriate parameters that give the best compression. A key novelty of this work is harnessing the capabilities of autoencoders for edge-enhanced compressive offloading based on portable encodings, latent space splitting and fine-tuning network weights. Considering how the combination of features lead to different QoS models, the system is capable of processing a large number of user requests in a given time. The proposed hyperparameter search strategy (over the neural architectural space) reduces the computational cost of search through the entire space by up to 89%. When deployed on an edge-enhanced cloud using an Azure IoT testbed, the approach saves up to 70% data transfer costs and takes 32% less time for job completion. It eliminates the additional computational cost of decompression, thereby reducing the processing cost by up to 30%.</p

    RES: Real-time Video Stream Analytics using Edge Enhanced Clouds

    Full text link
    IEEE With increasing availability and use of Internet of Things (IoT) devices large amounts of streaming data is now being produced at high velocity. Applications which require low latency response such as video surveillance demand a swift and efficient analysis of this data. Existing approaches employ cloud infrastructure to store and perform machine learning based analytics on this data. This centralized approach has limited ability to support analysis of real-time, large-scale streaming data due to network bandwidth and latency constraints between data source and cloud. We propose RealEdgeStream (RES) an edge enhanced stream analytics system for large-scale, high performance data analytics. The proposed approach investigates the problem of video stream analytics by proposing (i) filtration and (ii) identification phases. The filtration phase reduces the amount of data by filtering low value stream objects using configurable rules. The identification phase uses deep learning inference to perform analytics on the streams of interest. The stages are mapped onto available in-transit and cloud resources using a placement algorithm to satisfy the Quality of Service (QoS) constraints identified by a user. The job completion in the proposed system takes 49\% less time and saves 99\% bandwidth compared to a centralized cloud-only based approach
    corecore