75 research outputs found

    Supramolecular recognition of estrogens via molecularly imprinted polymers

    Get PDF
    The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple interactions and formed with the target 17ÎČ-estradiol as a template molecule. High-performance liquid chromatography with spectroscopic UV, selective, and a sensitive electrochemical CoulArray detector was used for the determination of 17ÎČ-estradiol, estrone, and estriol in simulated body fluid which mimicked human plasma

    Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    Get PDF
    Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns.We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1(st)-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (P<0.001). Western blot concurred in determining that EONS babies had conspicuous Hp&HpRP bands in cord blood ("switch-on pattern") as opposed to non-EONS newborns who had near-absent "switch-off pattern" (P<0.001). Fetal Hp phenotype independently impacted Hp&HpRP. A bayesian latent-class analysis (LCA) was further used for unbiased classification of all 180 cases based on probability of "antenatal IAI exposure" as latent variable. This was then subjected to 2(nd)-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≀20%) versus high (≄70%) probability of IAI exposure. This approach reclassified ∌30% of clinical EONS diagnoses lowering the number needed to harm and increasing the odds ratios for several adverse outcomes including intra-ventricular hemorrhage.Antenatal exposure to IAI results in precocious switch-on of Hp&HpRP expression. As EONS biomarker, cord blood Hp&HpRP has potential to improve the selection of newborns for prompt and targeted treatment at birth

    Chiral recognition by molecularly imprinted polymers in aqueous media

    No full text
    Molecularly imprinted polymers were prepared using 2-vinylpyridine and/or methacrylic acid as functional monomers in a self-assembly imprinting protocol. The resulting polymers were analyzed in aqueous media, and the effects from the pH of the mobile phase and the degree of added organic solvent were investigated. The results are indicative of the importance of ionic bonds in conjunction with hydrophobic interactions in the formation of the complexes between the analyte and the polymers

    Applications of molecularly imprinted materials as selective adsorbents : Emphasis on enzymatic equilibrium shifting and library screening

    No full text
    Molecular imprinting is an attractive method for producing highly selective adsorbents, and several new and potentially useful applications based on molecularly imprinted polymers (MIPs) have been described in recent years. In this article, we highlight some of the areas where these materials have found application, and also describe some new fields of application where the selectivities of imprinted materials can be gainfully employed, for example as binding matrices in the screening of combinatorial libraries, and as auxiliary agents in enzymatic syntheses

    Catalyst-Free Cycloaddition Reaction for the Synthesis of Glyconanoparticles

    No full text
    A new conjugation method for the immobilization of carbohydrates on nanomaterials was demonstrated simply by mixing perfluorophenyl azide-functionalized silica nanoparticles (SNPs), an amine-derivatized carbohydrate, and phenylacetaldehyde under ambient conditions without any catalyst. The density of carbohydrates on the glyconanoparticles was determined using the quantitative 19F NMR (19F qNMR) technique; for example, the density of D-mannose (Man) on Man-SNPs was 2.5 ± 0.2 × 10Âż16 nmol/nm2. The glyconanoparticles retained their binding affinity and selectivity toward cognate lectins. The apparent dissociation constant of the glyconanoparticles was measured by a fluorescence competition assay, where the binding affinity of Man-SNPs was almost 4 orders of magnitude higher than that of Man with concanavalin A. Moreover, even with a ligand density of 2.6 times lower than Man-SNPs synthesized by the coppercatalyzed azideÂżalkyne cycloaddition, the binding affinity of Man-SNPs prepared by the current method was more than 4 times higher. KEYWORDS: carbohydrates, glyconanomaterials, couplingPeer Reviewe
    • 

    corecore