6,382 research outputs found

    An exact relation between Eulerian and Lagrangian velocity increment statistics

    Full text link
    We present a formal connection between Lagrangian and Eulerian velocity increment distributions which is applicable to a wide range of turbulent systems ranging from turbulence in incompressible fluids to magnetohydrodynamic turbulence. For the case of the inverse cascade regime of two-dimensional turbulence we numerically estimate the transition probabilities involved in this connection. In this context we are able to directly identify the processes leading to strongly non-Gaussian statistics for the Lagrangian velocity increments.Comment: 5 pages, 3 figure

    Observation of Lasing Mediated by Collective Atomic Recoil

    Full text link
    We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-QQ optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering process and interpret our observations in terms of the collective atomic recoil laser. Numerical simulations are in good agreement with the experimental results.Comment: 4 pages, 3 figure

    Lagrangian statistics in forced two-dimensional turbulence

    Full text link
    We report on simulations of two-dimensional turbulence in the inverse energy cascade regime. Focusing on the statistics of Lagrangian tracer particles, scaling behavior of the probability density functions of velocity fluctuations is investigated. The results are compared to the three-dimensional case. In particular an analysis in terms of compensated cumulants reveals the transition from a strong non-Gaussian behavior with large tails to Gaussianity. The reported computation of correlation functions for the acceleration components sheds light on the underlying dynamics of the tracer particles.Comment: 8 figures, 1 tabl

    Photoassociation of a cold atom-molecule pair: long-range quadrupole-quadrupole interactions

    Get PDF
    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation the potential energy between an excited atom (without fine structure) and a ground state diatomic molecule at large separations. Both partners exhibit a permanent quadrupole moment, so that their mutual quadrupole-quadrupole long-range interaction is attractive enough to bind trimers. Numerical results are given for an excited Cs(6P) atom and a ground state Cs2 molecule. The prospects for achieving photoassociation of a cold atom/dimer pair is thus discussed and found promising. The formalism can be easily generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.Comment: 5 figure

    On the Feasibility of Coal-Driven Power Stations

    Get PDF
    The recent discovery of coal (black, fossilized plant remains) in a number of places offers an interesting alternative to the production of power from fission. Some of the places where coal has been found show indeed signs of previous exploitation by prehistoric men, who, however, probably used it for jewels and to blacken their faces at religious ceremonies. The power potentials depend on the fact that coal can be readily oxidized, with the production of a high temperature and an energy of about 0.0000001 megawatt days per gram. That is, of course, very little, but large amounts of coal (perhaps millions of tons) appear to be available. The chief advantage is that the critical amount is very much smaller for coal than for any fissile material. Fission plants become, as is well known, uneconomical below 50 megawatts, and a coal driven plant may be competitive for small communities ( such as small islands) with small power requirements

    Microstructure of the Local Interstellar Cloud and the Identification of the Hyades Cloud

    Get PDF
    We analyze high-resolution UV spectra of the Mg II h and k lines for 18 members of the Hyades Cluster to study inhomogeneity along these proximate lines of sight. The observations were taken by the Space Telescope Imaging Spectrograph (STIS) instrument on board the Hubble Space Telescope (HST). Three distinct velocity components are observed. All 18 lines of sight show absorption by the Local Interstellar Cloud (LIC), ten stars show absorption by an additional cloud, which we name the Hyades Cloud, and one star exhibits a third absorption component. The LIC absorption is observed at a lower radial velocity than predicted by the LIC velocity vector derived by Lallement & Bertin (1992) and Lallement et al. (1995), (v(predicted LIC) - v(observed LIC) = 2.9 +/- 0.7 km/s), which may indicate a compression or deceleration at the leading edge of the LIC. We propose an extention of the Hyades Cloud boundary based on previous HST observations of other stars in the general vicinity of the Hyades, as well as ground-based Ca II observations. We present our fits of the interstellar parameters for each absorption component. The availability of 18 similar lines of sight provides an excellent opportunity to study the inhomogeneity of the warm, partially ionized local interstellar medium (LISM). We find that these structures are roughly homogeneous. The measured Mg II column densities do not vary by more than a factor of 2 for angular separations of < 8 degrees, which at the outer edge of the LIC correspond to physical separations of < 0.6 pc.Comment: 35 pages, 11 figures, AASTEX v.5.0 plus EPSF extensions in mkfig.sty; accepted by Ap

    Geometry and violent events in turbulent pair dispersion

    Full text link
    The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is investigated by means of direct numerical simulations. The focus is on deviations from Richardson eddy-diffusivity model and in particular on the strong fluctuations experienced by tracers. Evidence is obtained that the distribution of distances attains an almost self-similar regime characterized by a very weak intermittency. The timescale of convergence to this behavior is found to be given by the kinetic energy dissipation time measured at the scale of the initial separation. Conversely the velocity differences between tracers are displaying a strongly anomalous behavior whose scaling properties are very close to that of Lagrangian structure functions. These violent fluctuations are interpreted geometrically and are shown to be responsible for a long-term memory of the initial separation. Despite this strong intermittency, it is found that the mixed moment defined by the ratio between the cube of the longitudinal velocity difference and the distance attains a statistically stationary regime on very short timescales. These results are brought together to address the question of violent events in the distribution of distances. It is found that distances much larger than the average are reached by pairs that have always separated faster since the initial time. They contribute a stretched exponential behavior in the tail of the inter-tracer distance probability distribution. The tail approaches a pure exponential at large times, contradicting Richardson diffusive approach. At the same time, the distance distribution displays a time-dependent power-law behavior at very small values, which is interpreted in terms of fractal geometry. It is argued and demonstrated numerically that the exponent converges to one at large time, again in conflict with Richardson's distribution.Comment: 21 page

    Multiscaling in passive scalar advection as stochastic shape dynamics

    Full text link
    The Kraichnan rapid advection model is recast as the stochastic dynamics of tracer trajectories. This framework replaces the random fields with a small set of stochastic ordinary differential equations. Multiscaling of correlation functions arises naturally as a consequence of the geometry described by the evolution of N trajectories. Scaling exponents and scaling structures are interpreted as excited states of the evolution operator. The trajectories become nearly deterministic in high dimensions allowing for perturbation theory in this limit. We calculate perturbatively the anomalous exponent of the third and fourth order correlation functions. The fourth order result agrees with previous calculations.Comment: 14 pages, LaTe

    Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind

    Get PDF
    The anisotropy of magnetophydrodynamic turbulence is investigated by using solar wind data from the Helios 2 spacecraft. We investigate the behaviour of the complete high-order moment tensors of magnetic field increments and we compare the usual longitudinal structure functions which have both isotropic and anisotropic contributions, to the fully anisotropic contribution. Scaling exponents have been extracted by an interpolation scaling function. Unlike the usual turbulence in fluid flows, small-scale magnetic fluctuations remain anisotropic. We discuss the radial dependence of both anisotropy and intermittency and their relationship.Comment: 7 pages, 2 figures, in press on Europhys. Let
    corecore