6,382 research outputs found
An exact relation between Eulerian and Lagrangian velocity increment statistics
We present a formal connection between Lagrangian and Eulerian velocity
increment distributions which is applicable to a wide range of turbulent
systems ranging from turbulence in incompressible fluids to magnetohydrodynamic
turbulence. For the case of the inverse cascade regime of two-dimensional
turbulence we numerically estimate the transition probabilities involved in
this connection. In this context we are able to directly identify the processes
leading to strongly non-Gaussian statistics for the Lagrangian velocity
increments.Comment: 5 pages, 3 figure
Observation of Lasing Mediated by Collective Atomic Recoil
We observe the buildup of a frequency-shifted reverse light field in a
unidirectionally pumped high- optical ring cavity serving as a dipole trap
for cold atoms. This effect is enhanced and a steady state is reached, if via
an optical molasses an additional friction force is applied to the atoms. We
observe the displacement of the atoms accelerated by momentum transfer in the
backscattering process and interpret our observations in terms of the
collective atomic recoil laser. Numerical simulations are in good agreement
with the experimental results.Comment: 4 pages, 3 figure
Lagrangian statistics in forced two-dimensional turbulence
We report on simulations of two-dimensional turbulence in the inverse energy
cascade regime. Focusing on the statistics of Lagrangian tracer particles,
scaling behavior of the probability density functions of velocity fluctuations
is investigated. The results are compared to the three-dimensional case. In
particular an analysis in terms of compensated cumulants reveals the transition
from a strong non-Gaussian behavior with large tails to Gaussianity. The
reported computation of correlation functions for the acceleration components
sheds light on the underlying dynamics of the tracer particles.Comment: 8 figures, 1 tabl
Photoassociation of a cold atom-molecule pair: long-range quadrupole-quadrupole interactions
The general formalism of the multipolar expansion of electrostatic
interactions is applied to the calculation the potential energy between an
excited atom (without fine structure) and a ground state diatomic molecule at
large separations. Both partners exhibit a permanent quadrupole moment, so that
their mutual quadrupole-quadrupole long-range interaction is attractive enough
to bind trimers. Numerical results are given for an excited Cs(6P) atom and a
ground state Cs2 molecule. The prospects for achieving photoassociation of a
cold atom/dimer pair is thus discussed and found promising. The formalism can
be easily generalized to the long-range interaction between molecules to
investigate the formation of cold tetramers.Comment: 5 figure
On the Feasibility of Coal-Driven Power Stations
The recent discovery of coal (black, fossilized plant remains) in a number of places offers an interesting alternative to the production of power from fission. Some of the places where coal has been found show indeed signs of previous exploitation by prehistoric men, who, however, probably used it for jewels and to blacken their faces at religious ceremonies. The power potentials depend on the fact that coal can be readily oxidized, with the production of a high temperature and an energy of about 0.0000001 megawatt days per gram. That is, of course, very little, but large amounts of coal (perhaps millions of tons) appear to be available. The chief advantage is that the critical amount is very much smaller for coal than for any fissile material. Fission plants become, as is well known, uneconomical below 50 megawatts, and a coal driven plant may be competitive for small communities ( such as small islands) with small power requirements
Microstructure of the Local Interstellar Cloud and the Identification of the Hyades Cloud
We analyze high-resolution UV spectra of the Mg II h and k lines for 18
members of the Hyades Cluster to study inhomogeneity along these proximate
lines of sight. The observations were taken by the Space Telescope Imaging
Spectrograph (STIS) instrument on board the Hubble Space Telescope (HST). Three
distinct velocity components are observed. All 18 lines of sight show
absorption by the Local Interstellar Cloud (LIC), ten stars show absorption by
an additional cloud, which we name the Hyades Cloud, and one star exhibits a
third absorption component. The LIC absorption is observed at a lower radial
velocity than predicted by the LIC velocity vector derived by Lallement &
Bertin (1992) and Lallement et al. (1995), (v(predicted LIC) - v(observed LIC)
= 2.9 +/- 0.7 km/s), which may indicate a compression or deceleration at the
leading edge of the LIC. We propose an extention of the Hyades Cloud boundary
based on previous HST observations of other stars in the general vicinity of
the Hyades, as well as ground-based Ca II observations. We present our fits of
the interstellar parameters for each absorption component. The availability of
18 similar lines of sight provides an excellent opportunity to study the
inhomogeneity of the warm, partially ionized local interstellar medium (LISM).
We find that these structures are roughly homogeneous. The measured Mg II
column densities do not vary by more than a factor of 2 for angular separations
of < 8 degrees, which at the outer edge of the LIC correspond to physical
separations of < 0.6 pc.Comment: 35 pages, 11 figures, AASTEX v.5.0 plus EPSF extensions in mkfig.sty;
accepted by Ap
Geometry and violent events in turbulent pair dispersion
The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow
is investigated by means of direct numerical simulations. The focus is on
deviations from Richardson eddy-diffusivity model and in particular on the
strong fluctuations experienced by tracers. Evidence is obtained that the
distribution of distances attains an almost self-similar regime characterized
by a very weak intermittency. The timescale of convergence to this behavior is
found to be given by the kinetic energy dissipation time measured at the scale
of the initial separation. Conversely the velocity differences between tracers
are displaying a strongly anomalous behavior whose scaling properties are very
close to that of Lagrangian structure functions. These violent fluctuations are
interpreted geometrically and are shown to be responsible for a long-term
memory of the initial separation. Despite this strong intermittency, it is
found that the mixed moment defined by the ratio between the cube of the
longitudinal velocity difference and the distance attains a statistically
stationary regime on very short timescales. These results are brought together
to address the question of violent events in the distribution of distances. It
is found that distances much larger than the average are reached by pairs that
have always separated faster since the initial time. They contribute a
stretched exponential behavior in the tail of the inter-tracer distance
probability distribution. The tail approaches a pure exponential at large
times, contradicting Richardson diffusive approach. At the same time, the
distance distribution displays a time-dependent power-law behavior at very
small values, which is interpreted in terms of fractal geometry. It is argued
and demonstrated numerically that the exponent converges to one at large time,
again in conflict with Richardson's distribution.Comment: 21 page
Multiscaling in passive scalar advection as stochastic shape dynamics
The Kraichnan rapid advection model is recast as the stochastic dynamics of
tracer trajectories. This framework replaces the random fields with a small set
of stochastic ordinary differential equations. Multiscaling of correlation
functions arises naturally as a consequence of the geometry described by the
evolution of N trajectories. Scaling exponents and scaling structures are
interpreted as excited states of the evolution operator. The trajectories
become nearly deterministic in high dimensions allowing for perturbation theory
in this limit. We calculate perturbatively the anomalous exponent of the third
and fourth order correlation functions. The fourth order result agrees with
previous calculations.Comment: 14 pages, LaTe
Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind
The anisotropy of magnetophydrodynamic turbulence is investigated by using
solar wind data from the Helios 2 spacecraft. We investigate the behaviour of
the complete high-order moment tensors of magnetic field increments and we
compare the usual longitudinal structure functions which have both isotropic
and anisotropic contributions, to the fully anisotropic contribution. Scaling
exponents have been extracted by an interpolation scaling function. Unlike the
usual turbulence in fluid flows, small-scale magnetic fluctuations remain
anisotropic. We discuss the radial dependence of both anisotropy and
intermittency and their relationship.Comment: 7 pages, 2 figures, in press on Europhys. Let
- …