6 research outputs found

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF

    Soft bottom species richness and diversity as a function of depth and iceberg scour in Arctic glacial Kongsfjorden (Svalbard)

    Get PDF
    Macrozoobenthic soft-sediment communities inhabiting six depth zones of central Arctic Kongsfjorden were analysed comparatively using SCUBA-diving. 63 taxa were found, 30 of which had not been reported for Kongsfjorden and seven for Svalbard. Suspensivorous or surface and sub-surface detritivorous polychaetes and deposit-feeding amphipods were dominant. Only eleven taxa of 45 species and additional 18 families identified inhabited the complete depth range. Biomass ranged from 3.5 to 25.0 g ash free dry mass m-2 and mean Shannon diversity (Log e) was 2.06. Similarity clustering from abun-dance and biomass data showed a significant difference between the shal-low station (5m) and the rest. The latter formed two subgroups (10-20m, 25-30m). These differences together with information on ice-scouring support the intermediate disturbance hypothesis indicating that habitats impacted by moderate iceberg scouring enable higher diversity. In contrast, biotopes frequently affected only host pioneer communities, while mature, less diverse assemblages dominate depths of low impact

    Size-dependent protein segregation at membrane interfaces

    No full text
    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles
    corecore