140 research outputs found

    Two Gallium data sets, spin flavour precession and KamLAND

    Get PDF
    We reexamine the possibility of a time modulation of the low energy solar neutrino flux which is suggested by the average decrease of the Ga data in line with our previous arguments. We perform two separate fits to the solar neutrino data, one corresponding to 'high' and the other to 'low' Ga data, associated with low and high solar activity respectively. We therefore consider an alternative to the conventional solar+KamLAND fitting, which allows one to explore the much wider range of the θ12\theta_{12} angle permitted by the KamLAND fitting alone. We find a solution with parameters Δm212=8.2×10−5eV2,tan2θ=0.31\Delta m^2_{21}=8.2\times 10^{-5} eV^2, tan^{2}\theta=0.31 in which the 'high' and the 'low' Ga rates lie far apart and are close to their central values and is of comparable quality to the global best fit, where these rates lie much closer to each other. This is an indication that the best fit in which all solar and KamLAND data are used is not a good measure of the separation of the two Ga data sets, as the information from the low energy neutrino modulation is dissimulated in the wealth of data. Furthermore for the parameter set proposed one obtains an equally good fit to the KamLAND energy spectrum and an even better fit than the 'conventional' LMA one for the reactor antineutrino survival probability as measured by KamLAND.Comment: V2: 15 pages, 3 eps figures, fit improved, final version to appear in Journal of Physics

    General Solution Of Linear Vector Supersymmetry

    Full text link
    We give the general solution of the Ward identity for the linear vector supersymmetry which characterizes all topological models. Such solution, whose expression is quite compact and simple, greatly simplifies the study of theories displaying a supersymmetric algebraic structure, reducing to a few lines the proof of their possible finiteness. In particular, the cohomology technology usually involved for the quantum extension of these theories, is completely bypassed. The case of Chern-Simons theory is taken as an example.Comment: 18 pages, LaTeX, no figure

    Chromosome diversity and evolution in helicoide a (Gastropoda: Stylommatophora): A synthesis from original and literature data

    Get PDF
    We performed a molecular and a comparative cytogenetic analysis on different Helicoidea species and a review of all the available chromosome data on the superfamily to provide an updated assessment of its karyological diversity. Standard karyotyping, banding techniques, and Fluorescence in situ hybridization of Nucleolus Organizer Region loci (NOR-FISH) were performed on fifteen species of three families: two Geomitridae, four Hygromiidae and nine Helicidae. The karyotypes of the studied species varied from 2n = 44 to 2n = 60, highlighting a high karyological diversity. NORs were on a single chromosome pair in Cernuella virgata and on multiple pairs in four Helicidae, representing ancestral and derived conditions, respectively. Heterochromatic C-bands were found on pericentromeric regions of few chromosomes, being Q-and 4′,6-diamidino-2-phenylindole (DAPI) negative. NOR-associated heterochromatin was C-banding and chromomycin A3 (CMA3) positive. Considering the available karyological evidence on Helicoidea and superimposing the chromosome data gathered from different sources on available phylogenetic inferences, we describe a karyotype of 2n = 60 with all biarmed elements as the ancestral state in the superfamily. From this condition, an accumulation of chromosome translocations led to karyotypes with a lower chromosome number (2n = 50–44). This process occurred independently in different lineages, while an augment of the chromosome number was detectable in Polygyridae. Chromosome inversions were also relevant chromosome rearrangements in Helicoidea, leading to the formation of telocentric elements in karyotypes with a relatively low chromosome count

    Comparative analysis of eliciting capacity of raw and roasted peanuts: the role of gastrointestinal digestion

    Get PDF
    This study investigated the simultaneous impact of food matrix and processing on the food allergy eliciting capacity of peanuts in a physiologically relevant context. Whole raw and roasted peanuts were subjected to in vitro digestion combining the harmonized oral-gastric-duodenal digestion models with brush border membrane enzymes (BBM) to simulate the jejunal degradation of peptides. SDS-PAGE and HPLC analysis showed that roasting increased digestibility of peanuts and this trend was even more evident after BBM degradation. The eliciting properties of raw and roasted peanuts were assessed by Rat Basophil Leukemia assay in the presence of sera from peanut-allergic patients. As general features, the BBM digestion reduced allergenicity of roasted peanuts compared to the raw counterpart, suggesting that intestinal peptidases effectively contribute to further destroy specific domains of peanut allergens. These findings provide new and more realistic insights in the stability of peanut allergens within their natural matrix

    Helix straminea Briganti, 1825 in Italy (Gastropoda: Pulmonata): taxonomic history, morphology, biology, distribution and phylogeny

    Get PDF
    The land snail taxon Helix straminea Briganti, 1825 has been reintroduced as a valid species in 2014. We provide here a comprehensive account of its taxonomy, distribution, anatomy, phylogeny and karyology in Italy. An overview of the historical views on the validity of the species is presented and faunistic data are reviewed and implemented with new records from Campania and Basilicata. A lectotype is fixed for H. straminea from the syntypes stored in the Muséum d’Histoire Naturelle of Genève, as well as for three other taxa (Helix straminiformis Bourguignat, 1876, Helix yleobia Bourguignat, 1883 and Helix straminea ssp. elongata Bourguignat, 1860). Genital system, radula and karyotype are described for the first time. Molecular analysis of two mitochondrial genes combining GenBank data and the new sequences presented in this paper showed no differentiation between the northern and southern Italian populations. The conservation status of the species and its possible threats are discussed

    On the Renormalizability of Noncommutative U(1) Gauge Theory - an Algebraic Approach

    Full text link
    We investigate the quantum effects of the nonlocal gauge invariant operator 1D2Fμν∗1D2Fμν\frac{1}{{}{D}^{2}}{F}_{\mu \nu}\ast \frac{1}{{}{D}^{2}}{F}^{\mu \nu} in the noncommutative U(1) action and its consequences to the infrared sector of the theory. Nonlocal operators of such kind were proposed to solve the infrared problem of the noncommutative gauge theories evading the questions on the explicit breaking of the Lorentz invariance. More recently, a first step in the localization of this operator was accomplished by means of the introduction of an extra tensorial matter field, and the first loop analysis was carried out (Eur.Phys.J.C62:433−443,2009)(Eur.Phys.J.\textbf{C62}:433-443,2009). We will complete this localization avoiding the introduction of new degrees of freedom beyond those of the original action by using only BRST doublets. This will allow us to make a complete BRST algebraic study of the renormalizability of the theory, following Zwanziger's method of localization of nonlocal operators in QFT.Comment: standard Latex no figures, version2 accepted in J. Phys A: Math Theo

    Periodic Astrometric Signal Recovery Through Convolutional Autoencoders

    Get PDF
    Astrometric detection involves precise measurements of stellar positions, and it is widely regarded as the leading concept presently ready to find Earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope [39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around {\}{\$}{\backslash}alpha {\$}{\$}\alpha$ Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one-millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper, we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations

    Periodic Astrometric Signal Recovery through Convolutional Autoencoders

    Get PDF
    Astrometric detection involves a precise measurement of stellar positions, and is widely regarded as the leading concept presently ready to find earth-mass planets in temperate orbits around nearby sun-like stars. The TOLIMAN space telescope[39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric monitoring of bright binary stars. In particular the mission will be optimised to search for habitable-zone planets around Alpha Centauri AB. If the separation between these two stars can be monitored with sufficient precision, tiny perturbations due to the gravitational tug from an unseen planet can be witnessed and, given the configuration of the optical system, the scale of the shifts in the image plane are about one millionth of a pixel. Image registration at this level of precision has never been demonstrated (to our knowledge) in any setting within science. In this paper we demonstrate that a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified simulations of the TOLIMAN data and we present the full experimental pipeline to recreate out experiments from the simulations to the signal analysis. In future works, all the more realistic sources of noise and systematic effects present in the real-world system will be injected into the simulations.Comment: Preprint version of the manuscript to appear in the Volume "Intelligent Astrophysics" of the series "Emergence, Complexity and Computation", Book eds. I. Zelinka, D. Baron, M. Brescia, Springer Nature Switzerland, ISSN: 2194-728

    Higher-order non-symmetric counterterms in pure Yang-Mills theory

    Full text link
    We analyze the restoration of the Slavnov-Taylor (ST) identities for pure massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization scheme with IR regulator. We obtain the most general form of the action-like part of the symmetric regularized action, obeying the relevant ST identities and all other relevant symmetries of the model, to all orders in the loop expansion. We also give a cohomological characterization of the fulfillment of BPHZL IR power-counting criterion, guaranteeing the existence of the limit where the IR regulator goes to zero. The technique analyzed in this paper is needed in the study of the restoration of the ST identities for those models, like the MSSM, where massless particles are present and no invariant regularization scheme is known to preserve the full set of ST identities of the theory.Comment: Final version published in the journa

    An Approach to the Equivalence Theorem by the Slavnov-Taylor Identities

    Get PDF
    We discuss the Equivalence Theorem (ET) in the BRST formalism. The existence of a local inverse of the field transformation (at least as a formal power expansion) suggests a formulation of the ET, which allows a nilpotent BRST symmetry. This strategy cannot be implemented at the quantum level if the inverse is non-local. In this case we propose an alternative formulation of the ET, where, by using Faddeev-Popov fields, this difficulty is circumvented. We study the quantum deformation of the associated ST identity, which turns out to be anomaly free, and show that a selected set of Green functions, which in some cases can be identified with the physical observables of the model, does not depend on the choice of the transformation of the fields. In general the transformation of the fields yields a non-renormalizable theory. When the equivalence is established between a renormalizable and a non-renormalizable theory, the ET provides a way to give a meaning to the last one by using the resulting ST identity. In this case the Quantum Action Principle cannot be of any help in the discussion of the ET. We assume and discuss the validity of a Quasi Classical Action Principle, which turns out to be sufficient for the present work. As an example we study the renormalizability and unitarity of massive QED in Proca's gauge by starting from a linear Lorentz-covariant gauge.Comment: 26 page
    • …
    corecore