154 research outputs found
Magnetic reconnection during collisionless, stressed, X-point collapse using Particle-in-Cell simulation
Two cases of weakly and strongly stressed X-point collapse were considered.
Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional
spatial compression of the X-point, respectively. In the weakly stressed case,
the reconnection rate, defined as the out-of-plane electric field in the
X-point (the magnetic null) normalised by the product of external magnetic
field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en
times being 0.04. Electron energy distribution in the current sheet, at the
high energy end of the spectrum, shows a power law distribution with the index
varying in time, attaining a maximal value of -4.1 at the final simulation time
step (1.25 Alfv\'en times). In the strongly stressed case, magnetic
reconnection peak occurs 3.4 times faster and is more efficient. The peak
reconnection rate now attains value 2.5, with the average reconnection rate
over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the
electrons in the current sheet attains now a steeper index of -5.5, a value
close to the ones observed in the vicinity of X-type region in the Earth's
magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial
magnteic energy is converted into heat and accelerated particle energy in the
case of weak and strong stress, respectively. In the both cases, during the
peak of the reconnection, the quadruple out-of-plane magnetic field is
generated, hinting possibly to the Hall regime of the reconnection. These
results strongly suggest the importance of the collionless, stressed X-point
collapse as a possible contributing factor to the solution of the solar coronal
heating problem or more generally, as an efficient mechanism of converting
magnetic energy into heat and super-thermal particle energy.Comment: Final Accepted Version (Physics of Plasmas in Press 2007
Dynamic Provenance for SPARQL Update
While the Semantic Web currently can exhibit provenance information by using
the W3C PROV standards, there is a "missing link" in connecting PROV to storing
and querying for dynamic changes to RDF graphs using SPARQL. Solving this
problem would be required for such clear use-cases as the creation of version
control systems for RDF. While some provenance models and annotation techniques
for storing and querying provenance data originally developed with databases or
workflows in mind transfer readily to RDF and SPARQL, these techniques do not
readily adapt to describing changes in dynamic RDF datasets over time. In this
paper we explore how to adapt the dynamic copy-paste provenance model of
Buneman et al. [2] to RDF datasets that change over time in response to SPARQL
updates, how to represent the resulting provenance records themselves as RDF in
a manner compatible with W3C PROV, and how the provenance information can be
defined by reinterpreting SPARQL updates. The primary contribution of this
paper is a semantic framework that enables the semantics of SPARQL Update to be
used as the basis for a 'cut-and-paste' provenance model in a principled
manner.Comment: Pre-publication version of ISWC 2014 pape
Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence
The fundamental problem of Farley-Buneman turbulence in the auroral
-region has been discussed and debated extensively in the past two decades.
In the present paper we intend to clarify the different steps that the auroral
-region plasma has to undergo before reaching a steady state. The
mode-coupling calculation, for Farley-Buneman turbulence, is developed in order
to place it in perspective and to estimate its magnitude relative to the
anomalous effects which arise through the nonlinear wave-particle interaction.
This nonlinear effect, known as nonlinear ``Landau damping'' is due to the
coupling of waves which produces other waves which in turn lose energy to the
bulk of the particles by Landau damping. This leads to a decay of the wave
energy and consequently a heating of the plasma. An equation governing the
evolution of the field spectrum is derived and a physical interpration for each
of its terms is provided
Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds
By means of two- and three-dimensional particle-in-cell simulations, we
investigate the process of driven magnetic reconnection at the termination
shock of relativistic striped flows. In pulsar winds and in magnetar-powered
relativistic jets, the flow consists of stripes of alternating magnetic field
polarity, separated by current sheets of hot plasma. At the wind termination
shock, the flow compresses and the alternating fields annihilate by driven
magnetic reconnection. Irrespective of the stripe wavelength "lambda" or the
wind magnetization "sigma" (in the regime sigma>>1 of magnetically-dominated
flows), shock-driven reconnection transfers all the magnetic energy of
alternating fields to the particles, whose average Lorentz factor increases by
a factor of sigma with respect to the pre-shock value. In the limit
lambda/(r_L*sigma)>>1, where r_L is the relativistic Larmor radius in the wind,
the post-shock particle spectrum approaches a flat power-law tail with slope
around -1.5, populated by particles accelerated by the reconnection electric
field. The presence of a current-aligned "guide" magnetic field suppresses the
acceleration of particles only when the guide field is stronger than the
alternating component. Our findings place important constraints on the models
of non-thermal radiation from Pulsar Wind Nebulae and relativistic jets.Comment: 25 pages, 14 figures, movies available at
https://www.cfa.harvard.edu/~lsironi/sironi_movies.tar ; in press, special
issue of Computational Science and Discovery on selected research from the
22nd International Conference on Numerical Simulation of Plasma
Ultrametric spaces of branches on arborescent singularities
Let be a normal complex analytic surface singularity. We say that is
arborescent if the dual graph of any resolution of it is a tree. Whenever
are distinct branches on , we denote by their intersection
number in the sense of Mumford. If is a fixed branch, we define when and
otherwise. We generalize a theorem of P{\l}oski concerning smooth germs of
surfaces, by proving that whenever is arborescent, then is an
ultrametric on the set of branches of different from . We compute the
maximum of , which gives an analog of a theorem of Teissier. We show that
encodes topological information about the structure of the embedded
resolutions of any finite set of branches. This generalizes a theorem of Favre
and Jonsson concerning the case when both and are smooth. We generalize
also from smooth germs to arbitrary arborescent ones their valuative
interpretation of the dual trees of the resolutions of . Our proofs are
based in an essential way on a determinantal identity of Eisenbud and Neumann.Comment: 37 pages, 16 figures. Compared to the first version on Arxiv, il has
a new section 4.3, accompanied by 2 new figures. Several passages were
clarified and the typos discovered in the meantime were correcte
The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands
The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options
Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method
We complete classical investigations concerning the dynamical stability of an
infinite homogeneous gaseous medium described by the Euler-Poisson system or an
infinite homogeneous stellar system described by the Vlasov-Poisson system
(Jeans problem). To determine the stability of an infinite homogeneous stellar
system with respect to a perturbation of wavenumber k, we apply the Nyquist
method. We first consider the case of single-humped distributions and show
that, for infinite homogeneous systems, the onset of instability is the same in
a stellar system and in the corresponding barotropic gas, contrary to the case
of inhomogeneous systems. We show that this result is true for any symmetric
single-humped velocity distribution, not only for the Maxwellian. If we
specialize on isothermal and polytropic distributions, analytical expressions
for the growth rate, damping rate and pulsation period of the perturbation can
be given. Then, we consider the Vlasov stability of symmetric and asymmetric
double-humped distributions (two-stream stellar systems) and determine the
stability diagrams depending on the degree of asymmetry. We compare these
results with the Euler stability of two self-gravitating gaseous streams.
Finally, we determine the corresponding stability diagrams in the case of
plasmas and compare the results with self-gravitating systems
An introduction to Graph Data Management
A graph database is a database where the data structures for the schema
and/or instances are modeled as a (labeled)(directed) graph or generalizations
of it, and where querying is expressed by graph-oriented operations and type
constructors. In this article we present the basic notions of graph databases,
give an historical overview of its main development, and study the main current
systems that implement them
- âŠ