92 research outputs found
Multiresonant Layered Acoustic Metamaterial (MLAM) solution for broadband low-frequency noise attenuation through double-peak sound transmission loss response (preprint)
The problem of noise control and attenuation is of interest in a broad range of applications, especially in the low-frequency range, below 1000 Hz. Acoustic metamaterials allow us to tackle this problem with solutions that do not necessarily rely on high amounts of mass, however most of them still present two major challenges: they rely on complex structures making them difficult to manufacture, and their attenuating capabilities are limited to narrow frequency bandwidths. Here we propose the Multiresonant Layered Acoustic Metamaterial (MLAM) concept as a novel kind of acoustic metamaterial based on coupled resonances mechanisms. Their main advantages hinge on providing enhanced sound attenuation capabilities in terms of a double-peak sound transmission loss response by means of a layered configuration suitable for large scale manufacturing
Hydrogen-transfer catalysis with Cp*Ir<sup>III</sup> complexes:The influence of the ancillary ligands
Fourteen Cp*IrIII complexes, bearing various combinations of N- and C-spectator ligands, are assayed in hydrogen-transfer catalysis from isopropyl alcohol to acetophenone under various conditions to investigate ligand effects in this widely used reaction. The new cationic complexes bearing monodentate pyridine and N-heterocyclic carbene (NHC) ligands were characterized crystallographically and by variable-temperature nuclear magnetic resonance (VT-NMR). Control experiments and mercury poisoning tests showed that iridium(0) nanoparticles, although active in the reaction, are not responsible for the high activity observed for the most active precatalyst [Cp*Ir(IMe) 2Cl]BF4 (6). For efficient catalysis, it was found necessary to have both NHCs in monodentate form; tying them together in a bis-NHC chelate ligand gave greatly reduced activity. The kinetics of the base-assisted reaction showed induction periods as well as deactivation processes, and H/D scrambling experiments cast some doubt on the classical monohydride mechanism. © 2013 American Chemical Society
Modular hydroxyamide and thioamide pyranoside-based ligand library from the sugar pool: new class of ligands for asymmetric transfer hydrogenation of ketones
10.1002/adsc.20130111
Rh-catalyzed asymmetric hydrogenation using a furanoside monophosphite second-generation ligand library: Scope and limitations
10.1016/j.tetasy.2013.12.010The ligand design of one of the most successful monophosphite ligand classes in Rh-catalyzed hydrogenation was expanded upon by introducing several substituents at the C-3 position of the furanoside backbone. A small but structurally important library of monophosphite ligands was developed by changing the substituents at the C-3 position of the furanoside backbone and the substituents/configurations at the biaryl phosphite group. These new furanoside monophosphite ligands were evaluated in the Rh-catalyzed asymmetric hydrogenation of a,Ă-unsaturated carboxylic acid derivatives and enamides. The results show that the effect of introducing a substituent at the C-3 position of the furanoside backbone on the enantioselectivity depends not only on the configuration at the C-3 position of the furanoside backbone and the binaphthyl group but also on the substrate. Thus, the new ligands afforded high to excellent enantioselectivities in the reduction of carboxylic acid derivatives (ee's up to &gt;99.9%) and moderate ee's (up to 67%) in the hydrogenation of enamides
Chemoenzymatic Dynamic Kinetic Resolution of ÎČ-Halo Alcohols. An Efficient Route to Chiral Epoxides
- âŠ