390 research outputs found

    The Challenge of Wide-Field Transit Surveys: The Case of GSC 01944-02289

    Full text link
    Wide-field searches for transiting extra-solar giant planets face the difficult challenge of separating true transit events from the numerous false positives caused by isolated or blended eclipsing binary systems. We describe here the investigation of GSC 01944-02289, a very promising candidate for a transiting brown dwarf detected by the Transatlantic Exoplanet Survey (TrES) network. The photometry and radial velocity observations suggested that the candidate was an object of substellar mass in orbit around an F star. However, careful analysis of the spectral line shapes revealed a pattern of variations consistent with the presence of another star whose motion produced the asymmetries observed in the spectral lines of the brightest star. Detailed simulations of blend models composed of an eclipsing binary plus a third star diluting the eclipses were compared with the observed light curve and used to derive the properties of the three components. Our photometric and spectroscopic observations are fully consistent with a blend model of a hierarchical triple system composed of an eclipsing binary with G0V and M3V components in orbit around a slightly evolved F5 dwarf. We believe that this investigation will be helpful to other groups pursuing wide-field transit searches as this type of false detection could be more common than true transiting planets, and difficult to identify.Comment: To appear in ApJ, v. 621, 2005 March 1

    Fermi-Liquid Interactions in d-Wave Superconductor

    Full text link
    This article develops a quantitative quasiparticle model of the low-temperature properties of d-wave superconductors which incorporates both Fermi-liquid effects and band-structure effects. The Fermi-liquid interaction effects are found to be classifiable into strong and negligible renormalizaton effects, for symmetric and antisymmetric combinations of the energies of kk\uparrow and k-k\downarrow quasiparticles, respectively. A particularly important conclusion is that the leading clean-limit temperature-dependent correction to the superfluid density is not renormalized by Fermi-liquid interactions, but is subject to a Fermi velocity (or mass) renormalization effect. This leads to difficulties in accounting for the penetration depth measurements with physically acceptable parameters, and hence reopens the question of the quantitative validity of the quasiparticle picture.Comment: 4 page

    Orthorhombicity mixing of s- and d- gap components in YBa2Cu3O7YBa_2Cu_3O_7 without involving the chains

    Full text link
    Momentum decoupling develops when forward scattering dominates the pairing interaction and implies tendency for decorrelation between the physical behavior in the various regions of the Fermi surface. In this regime it is possible to obtain anisotropic s- or d-wave superconductivity even with isotropic pairing scattering. We show that in the momentum decoupling regime the distortion of the CuO2CuO_2 planes is enough to explain the experimental reports for s- mixing in the dominantly d-wave gap of YBa2Cu3O7YBa_2Cu_3O_7. In the case of spin fluctuations mediated pairing instead, a large part of the condensate must be located in the chains in order to understand the experiments.Comment: LATEX file and 3 Postscript figure

    Superconducting gap node spectroscopy using nonlinear electrodynamics

    Full text link
    We present a method to determine the nodal structure of the energy gap of unconventional superconductors such as high TcT_c materials. We show how nonlinear electrodynamics phenomena in the Meissner regime, arising from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero, can be used to perform ``node spectroscopy'', that is, as a sensitive bulk probe to locate the angular position of those lines. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and aba-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+sd+s and s+ids+id). We consider, as suggested by various experiments, order parameters with predominantly dd-wave character, and describe how to determine the possible presence of other symmetries. The nonlinear magnetic moment displays a distinct behavior if nodes in the gap are absent but regions with small, finite, values of the energy gap exist.Comment: 18 pages, Revtex, 9 postscript figures. Submitted to Phys. Rev

    Unveiling Relations in the Industry 4.0 Standards Landscape based on Knowledge Graph Embeddings

    Get PDF
    Industry~4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of \emph{empowering interoperability} in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans^* family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.Comment: 15 pages, 7 figures, DEXA2020 Conferenc

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Disorder and chain superconductivity in YBa_2Cu_3O_{7-\delta}

    Full text link
    The effects of chain disorder on superconductivity in YBa_2Cu_3O_{7-\delta} are discussed within the context of a proximity model. Chain disorder causes both pair-breaking and localization. The hybridization of chain and plane wavefunctions reduces the importance of localization, so that the transport anisotropy remains large in the presence of a finite fraction δ\delta of oxygen vacancies. Penetration depth and specific heat measurements probe the pair-breaking effects of chain disorder, and are discussed in detail at the level of the self-consistent T-matrix approximation. Quantitative agreement with these experiments is found when chain disorder is present.Comment: 4 pages, 2 figures, submitted to PRB rapid communication

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte
    corecore