21 research outputs found

    Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    Get PDF
    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/

    SPINE-D: Accurate Prediction of Short and Long Disordered Regions by a Single Neural-Network Based Method

    No full text
    Short and long disordered regions of proteins have different preference for different amino acid residues. Different methods often have to be trained to predict them separately. In this study, we developed a single neural-network-based technique called SPINE-D that makes a three-state prediction first (ordered residues and disordered residues in short and long disordered regions) and reduces it into a two-state prediction afterwards. SPINE-D was tested on various sets composed of different combinations of Disprot annotated proteins and proteins directly from the PDB annotated for disorder by missing coordinates in X-ray determined structures. While disorder annotations are different according to Disprot and X-ray approaches, SPINE-D's prediction accuracy and ability to predict disorder are relatively independent of how the method was trained and what type of annotation was employed but strongly depend on the balance in the relative populations of ordered and disordered residues in short and long disordered regions in the test set. With greater than 85% overall specificity for detecting residues in both short and long disordered regions, the residues in long disordered regions are easier to predict at 81% sensitivity in a balanced test dataset with 56.5% ordered residues but more challenging (at 65% sensitivity) in a test dataset with 90% ordered residues. Compared to eleven other methods, SPINE-D yields the highest area under the curve (AUC), the highest Mathews correlation coefficient for residue-based prediction, and the lowest mean square error in predicting disorder contents of proteins for an independent test set with 329 proteins. In particular, SPINE-D is comparable to a meta predictor in predicting disordered residues in long disordered regions and superior in short disordered regions. SPINE-D participated in CASP 9 blind prediction and is one of the top servers according to the official ranking. In addition, SPINE-D was examined for prediction of functional molecular recognition motifs in several case studies.Full Tex
    corecore