1,536 research outputs found

    Inelastic neutron scattering study and Hubbard model description of the antiferromagnetic tetrahedral molecule Ni4Mo12

    Full text link
    The tetrameric Ni(II) spin cluster Ni4Mo12 has been studied by INS. The data were analyzed extensively in terms of a very general spin Hamiltonian, which includes antiferromagnetic Heisenberg interactions, biquadratic 2-spin and 3-spin interactions, a single-ion magnetic anisotropy, and Dzyaloshinsky-Moriya interactions. Some of the experimentally observed features in the INS spectra could be reproduced, however, one feature at 1.65 meV resisted all efforts. This supports the conclusion that the spin Hamiltonian approach is not adequate to describe the magnetism in Ni4Mo12. The isotropic terms in the spin Hamiltonian can be obtained in a strong-coupling expansion of the Hubbard model at half-filling. Therefore detailed theoretical studies of the Hubbard model were undertaken, using analytical as well as numerical techniques. We carefully analyzed its abilities and restrictions in applications to molecular spin clusters. As a main result it was found that the Hubbard model is also unable to appropriately explain the magnetism in Ni4Mo12. Extensions of the model are also discussed.Comment: 12 pages, 12 figure

    Discrete antiferromagnetic spin-wave excitations in the giant ferric wheel Fe18

    Full text link
    The low-temperature elementary spin excitations in the AFM molecular wheel Fe18 were studied experimentally by inelastic neutron scattering and theoretically by modern numerical methods, such as dynamical density matrix renormalization group or quantum Monte Carlo techniques, and analytical spin-wave theory calculations. Fe18 involves eighteen spin-5/2 Fe(III) ions with a Hilbert space dimension of 10^14, constituting a physical system that is situated in a region between microscopic and macroscopic. The combined experimental and theoretical approach allowed us to characterize and discuss the magnetic properties of Fe18 in great detail. It is demonstrated that physical concepts such as the rotational-band or L&E-band concepts developed for smaller rings are still applicable. In particular, the higher-lying low-temperature elementary spin excitations in Fe18 or AFM wheels in general are of discrete antiferromagnetic spin-wave character.Comment: 16 pages, 10 figure

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Full text link
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physic
    • …
    corecore