117 research outputs found

    Using Automatic Differentiation as a General Framework for Ptychographic Reconstruction

    Get PDF
    Coherent diffraction imaging methods enable imaging beyond lens-imposed resolution limits. In these methods, the object can be recovered by minimizing an error metric that quantifies the difference between diffraction patterns as observed, and those calculated from a present guess of the object. Efficient minimization methods require analytical calculation of the derivatives of the error metric, which is not always straightforward. This limits our ability to explore variations of basic imaging approaches. In this paper, we propose to substitute analytical derivative expressions with the automatic differentiation method, whereby we can achieve object reconstruction by specifying only the physics-based experimental forward model. We demonstrate the generality of the proposed method through straightforward object reconstruction for a variety of complex ptychographic experimental models.Comment: 23 pages (including references and supplemental material), 19 externally generated figure file

    Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes

    Full text link
    This paper is devoted to discuss the energy-momentum for static axially symmetric spacetimes in the framework of teleparallel theory of gravity. For this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz, Bergmann and Mo¨\ddot{o}ller prescriptions. A comparison of the results shows that the energy density is different but the momentum turns out to be constant in each prescription. This is exactly similar to the results available in literature using the framework of General Relativity. It is mentioned here that Mo¨\ddot{o}ller energy-momentum distribution is independent of the coupling constant λ\lambda. Finally, we calculate energy-momentum distribution for the Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.

    Teleparallel Energy-Momentum Distribution of Spatially Homogeneous Rotating Spacetimes

    Full text link
    The energy-momentum distribution of spatially homogeneous rotating spacetimes in the context of teleparallel theory of gravity is investigated. For this purpose, we use the teleparallel version of Moller prescription. It is found that the components of energy-momentum density are finite and well-defined but are different from General Relativity. However, the energy-momentum density components become the same in both theories under certain assumptions. We also analyse these quantities for some special solutions of the spatially homogeneous rotating spacetimes.Comment: 12 pages, accepted for publication in Int. J. Theor. Phy

    Antidepressant Activity of Pharmacological and Genetic Deactivation of the Small-Conductance Calcium-Activated Potassium Channel Subtype-3

    Get PDF
    Funding and Disclosure This research was supported by awards from the Neuroscience Catalyst program (Toronto) (FRB and JNN), the Canadian Institutes of Health Research (FRB and JN) and the National Science and Engineering Research Council of Canada (FRB). M.N. was additionally supported by a CAMH Discovery Fund Post-doctoral Fellowship. Conflict of Interest: None declared. Acknowledgments We thank J. Li, U. Mumtaz, S. Khan, S. Sivaruban, M. Billyard, E. Hauck, D. Oleinichenko, Michael Coombs and Lucas Francis Fowler for technical assistance at different stages of the work.Peer reviewedPostprin

    The Energy of Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics

    Full text link
    According to the Einstein, Weinberg, and M{\o}ller energy-momentum complexes, we evaluate the energy distribution of the singularity-free solution of the Einstein field equations coupled to a suitable nonlinear electrodynamics suggested by Ay\'{o}n-Beato and Garc\'{i}a. The results show that the energy associated with the definitions of Einstein and Weinberg are the same, but M{\o}ller not. Using the power series expansion, we find out that the first two terms in the expression are the same as the energy distributions of the Reissner-Nordstr\"{o}m solution, and the third term could be used to survey the factualness between numerous solutions of the Einstein field eqautions coupled to a nonlinear electrodynamics.Comment: 11 page

    A differentiable forward model for the concurrent, multi-peak Bragg coherent x-ray diffraction imaging problem

    Full text link
    We present a general analytic approach to spatially resolve the nano-scale lattice distortion field of strained and defected compact crystals with Bragg coherent x-ray diffraction imaging (BCDI). Our approach relies on fitting a differentiable forward model simultaneously to multiple BCDI datasets corresponding to independent Bragg reflections from the same single crystal. It is designed to be faithful to heterogeneities that potentially manifest as phase discontinuities in the coherently diffracted wave, such as lattice dislocations in an imperfect crystal. We retain fidelity to such small features in the reconstruction process through a Fourier transform -based resampling algorithm designed to largely avoid the point spread tendencies of commonly employed interpolation methods. The reconstruction model defined in this manner brings BCDI reconstruction into the scope of explicit optimization driven by automatic differentiation. With results from simulations and experimental diffraction data, we demonstrate significant improvement in the final image quality compared to conventional phase retrieval, enabled by explicitly coupling multiple BCDI datasets into the reconstruction loss function.Comment: 30 pages, 23 figure
    corecore