451 research outputs found
Basic properties of three-leg Heisenberg tube
We study three-leg antiferromagnetic Heisenberg model with the periodic
boundary conditions in the rung direction. Since the rungs form regular
triangles, spin frustration is induced. We use the density-matrix
renormalization group method to investigate the ground state. We find that the
spin excitations are always gapped to remove the spin frustration as long as
the rung coupling is nonzero. We also visibly confirm spin-Peierls dimerization
order in the leg direction. Both the spin gap and the dimerization order are
basically enhanced as the rung coupling increases.Comment: 4 pages, 2 figure
Spinon excitations in the XX chain: spectra, transition rates, observability
The exact one-to-one mapping between (spinless) Jordan-Wigner lattice
fermions and (spin-1/2) spinons is established for all eigenstates of the
one-dimensional s = 1=2 XX model on a lattice with an even or odd number N of
lattice sites and periodic boundary conditions. Exact product formulas for the
transition rates derived via Bethe ansatz are used to calculate asymptotic
expressions of the 2-spinon and 4-spinon parts (for large even N) as well as of
the 1-spinon and 3-spinon parts (for large odd N) of the dynamic spin structure
factors. The observability of these spectral contributions is assessed for
finite and infinite N.Comment: 19 pages, 10 figure
Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbBC
Magnetic phase diagrams of a tetragonal antiferromagnet TbBC were
clarified by temperature and field dependence of magnetization. It is
noticeable that the N{\'e}el temperature in TbBC is anomalously
enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for
the direction at 10 T. The magnetization processes as well as the
phase diagrams are well interpreted assuming that there appear field-induced
antiferroquadrupolar ordered phases in TbBC. The phase diagrams of the
AFQ compounds in RBC are systematically understood in terms of the
competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
Precise measurement of positronium hyperfine splitting using the Zeeman effect
Positronium is an ideal system for the research of the quantum
electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of
positronium, , gives a good test of the bound state
calculations and probes new physics beyond the Standard Model. A new method of
QED calculations has revealed the discrepancy by 15\,ppm (3.9) of
between the QED prediction and the experimental
average. There would be possibility of new physics or common systematic
uncertainties in the previous all experiments. We describe a new experiment to
reduce possible systematic uncertainties and will provide an independent check
of the discrepancy. We are now taking data and the current result of
has been obtained so far. A measurement with a precision of (ppm) is
expected within a year.Comment: 8 pages, 8 figures, 2 tables, proceeding of LEAP2011, accepted by
Hyperfine Interaction
Detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT)
The purpose of this study was to analyze the detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT).
Data for a total of 492 patients who had undergone both PET/CT and colonoscopy were analyzed. After the findings of PET/CT and colonoscopy were determined independently, the results were compared in each of the six colonic sites examined in all patients. The efficacy of PET/CT was determined using colonoscopic examination as the gold standard.
In all, 270 colorectal lesions 5 mm or more in size, including 70 pathologically confirmed malignant lesions, were found in 172 patients by colonoscopy. The sensitivity and specificity of PET/CT for detecting any of the colorectal lesions were 36 and 98%, respectively. For detecting lesions 11 mm or larger, the sensitivity was increased to 85%, with the specificity remaining consistent (97%). Moreover, the sensitivity for tumors 21 mm or larger was 96% (48/50). Tumors with malignant or high-grade pathology were likely to be positive with PET/CT. A size of 10 mm or smaller [odds ratio (OR) 44.14, 95% confidence interval (95% CI) 11.44-221.67] and flat morphology (OR 7.78, 95% CI 1.79-36.25) were significant factors that were associated with false-negative cases on PET/CT.
The sensitivity of PET/CT for detecting colorectal lesions is acceptable, showing size- and pathology-dependence, suggesting, for the most part, that clinically relevant lesions are detectable with PET/CT. However, when considering PET/CT for screening purposes caution must be exercised because there are cases of false-negative results
Fermentation and Cell Wall Degradation in Guineagrass and Italian Ryegrass Silages
Guineagrass (Panicum maximum Jacq.) was ensiled at the room temperature and Italian ryegrass (Lolium multiflorum L.) was ensiled at the room temperature and at 30 under the laboratory conditions. As a result, the acetic acid silage was made from Guineagrass and the lactic acid silages were made from Italian ryegrass. The loss of cell wall components during ensiling was the most in hemicellulose followed by NDF, but those of cellulose and AD-lignin were slight. In the hemicellulosic monosaccharides, the loss of hexose (galactose and glucose) was relatively high and that of pentose (arabinose and xylose) was relatively low in the three types of silage. The temperature had little effect on the losses from Italian ryegrass, and the loss of hemicellulose was higher in Guineagrass silage than in Italian ryegrass silages
Increased Life Span due to Calorie Restriction in Respiratory-Deficient Yeast
A model for replicative life span extension by calorie restriction (CR) in yeast has been proposed whereby reduced glucose in the growth medium leads to activation of the NAD(+)–dependent histone deacetylase Sir2. One mechanism proposed for this putative activation of Sir2 is that CR enhances the rate of respiration, in turn leading to altered levels of NAD(+) or NADH, and ultimately resulting in enhanced Sir2 activity. An alternative mechanism has been proposed in which CR decreases levels of the Sir2 inhibitor nicotinamide through increased expression of the gene coding for nicotinamidase, PNC1. We have previously reported that life span extension by CR is not dependent on Sir2 in the long-lived BY4742 strain background. Here we have determined the requirement for respiration and the effect of nicotinamide levels on life span extension by CR. We find that CR confers robust life span extension in respiratory-deficient cells independent of strain background, and moreover, suppresses the premature mortality associated with loss of mitochondrial DNA in the short-lived PSY316 strain. Addition of nicotinamide to the medium dramatically shortens the life span of wild type cells, due to inhibition of Sir2. However, even in cells lacking both Sir2 and the replication fork block protein Fob1, nicotinamide partially prevents life span extension by CR. These findings (1) demonstrate that respiration is not required for the longevity benefits of CR in yeast, (2) show that nicotinamide inhibits life span extension by CR through a Sir2-independent mechanism, and (3) suggest that CR acts through a conserved, Sir2-independent mechanism in both PSY316 and BY4742
- …
