25 research outputs found

    Predator Cat Odors Activate Sexual Arousal Pathways in Brains of Toxoplasma gondii Infected Rats

    Get PDF
    Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor

    Toxoplasma gondii Infection in the Brain Inhibits Neuronal Degeneration and Learning and Memory Impairments in a Murine Model of Alzheimer's Disease

    Get PDF
    Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD) in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49) of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide), anti-inflammatory cytokines (IL-10 and TGF-β), neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA), and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice

    Behavioral changes in mice caused by Toxoplasma gondii invasion of brain

    Get PDF
    Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls

    The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism

    Get PDF
    The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans
    corecore