963 research outputs found

    Final state interaction in the production of heavy unstable particles

    Full text link
    We make an attempt to discuss in detail the effects originating from the final state interaction in the processes involving production of unstable elementary particles and their subsequent decay. Two complementary scenarios are considered: the single resonance production and the production of two resonances. We argue that part of the corrections due to the final state interaction can be connected with the Coulomb phases of the involved charge particles; the presence of the unstable particle in the problem makes the Coulomb phase ``visible''. It is shown how corrections due to the final state interaction disappear when one proceeds to the total cross-sections. We derive one-loop non-factorizable radiative corrections to the lowest order matrix element of both single and double resonance production. We discuss how the infrared limit of the theories with the unstable particles is modified. In conclusion we briefly discuss our results in the context of the forthcoming experiments on the W+WW^+W^- and the ttˉt\bar t production at LEP 22 and NLC.Comment: 33 pages, latex, 6 figures (added), version accepted for publication in Nuc. Phys. B, substantial revisio

    QCD Radiative Correction to Zero Recoil Sum Rules for Heavy Flavor Transitions in the Small Velocity Limit.

    Get PDF
    We consider the small velocity sum rules for heavy flavour semileptonic transitions that are used to estimate the zero recoil values of semileptonic heavy flavour form factors. We analyze the complete O(αS\alpha _S) radiative correction to these sum rules. The corrections are universal and influence all "model-independent" bounds previously derived for semileptonic form factors at zero recoil.Comment: 13 pages, LaTeX, 3 figures

    Two -loop O(GFMH2)O(G_F{M_H}^2) radiative corrections to the Higgs decay width HγγH \to \gamma \gamma for large Higgs boson masses

    Full text link
    This note is devoted to the calculation of the two-loop O(GFMH2)O(G_F {M_H}^2) radiative corrections to the Higgs decay width HγγH \to \gamma \gamma for large values of the Higgs boson mass MHM_H within the Minimal Standard Model. The use of the Equivalence Theorem makes it possible to reduce the problem to the consideration of the physical Higgs boson field and the Goldstone bosons w+,w,zw^{+},w^{-},z. We present analytical results for the various two- and three-particle absorptive parts of two-loop contributions, using dispersive techniques, analytic results for all but one of the dispersive contributions. The typical size of the correction is  30\sim ~30 percent for a Higgs boson mass of order 1 TeV1~TeV.Comment: 21 pages, 7 uuencoded figure

    Black Holes in AdS/BCFT and Fluid/Gravity Correspondence

    Get PDF
    A proposal to describe gravity duals of conformal theories with boundaries (AdS/BCFT correspondence) was put forward by Takayanagi few years ago. However interesting solutions describing field theories at finite temperature and charge density are still lacking. In this paper we describe a class of theories with boundary, which admit black hole type gravity solutions. The theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. From this perspective AdS/BCFT appears analogous to the fluid/gravity correspondence. Among the class of the boundary extensions there is a special (integrable) one, for which the stress-energy tensor is fluid-like. We discuss features of that special solution as well as its thermodynamic properties.Comment: 18 pages, 4 figures (7 pdf-files). Save and view with Adobe Reader if images appear corrupted in the browse

    High-resolution radio imaging of two luminous quasars beyond redshift 4.5

    Full text link
    Context. Radio-loud active galactic nuclei in the early Universe are rare. The quasars J0906+6930 at redshift z=5.47 and J2102+6015 at z=4.57 stand out from the known sample with their compact emission on milliarcsecond (mas) angular scale with high (0.1-Jy level) flux densities measured at GHz radio frequencies. This makes them ideal targets for very long baseline interferometry (VLBI) observations. Aims. By means of VLBI imaging we can reveal the inner radio structure of quasars and model their brightness distribution to better understand the geometry of the jet and the physics of the sources. Methods. We present sensitive high-resolution VLBI images of J0906+6930 and J2102+6015 at two observing frequencies, 2.3 and 8.6 GHz. The data were taken in an astrometric observing programme involving a global five-element radio telescope array. We combined the data from five different epochs from 2017 February to August. Results. For one of the highest redshift blazars known, J0906+6930, we present the first-ever VLBI image obtained at a frequency below 8 GHz. Based on our images at 2.3 and 8.6 GHz, we confirm that this source has a sharply bent helical inner jet structure within ~3 mas from the core. The quasar J2102+6015 shows an elongated radio structure in the east-west direction within the innermost ~2 mas that can be described with a symmetric three-component brightness distribution model at 8.6 GHz. Because of their non-pointlike mas-scale structure, these sources are not ideal as astrometric reference objects. Our results demonstrate that VLBI observing programmes conducted primarily with astrometric or geodetic goals can be utilized for astrophysical purposes as well.Comment: 8 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Models of G time variations in diverse dimensions

    Full text link
    A review of different cosmological models in diverse dimensions leading to a relatively small time variation of the effective gravitational constant G is presented. Among them: 4-dimensional general scalar-tensor model, multidimensional vacuum model with two curved Einstein spaces, multidimensional model with multicomponent anisotropic "perfect fluid", S-brane model with scalar fields and two form field etc. It is shown that there exist different possible ways of explanation of relatively small time variation of the effective gravitational constant G compatible with present cosmological data (e.g. acceleration): 4-dimensional scalar-tensor theories or multidimensional cosmological models with different matter sources. The experimental bounds on G-dot may be satisfied ether in some restricted interval or for all allowed values of the synchronous time variable.Comment: 27 pages, Late
    corecore