118 research outputs found

    An Investigation of Stochastic Cooling in the Framework of Control Theory

    Full text link
    This report provides a description of unbunched beam stochastic cooling in the framework of control theory. The main interest in the investigation is concentrated on the beam stability in an active cooling system. A stochastic cooling system must be considered as a closed-loop, similar to the feedback systems used to damp collective instabilities. These systems, which are able to act upon themselves, are potentially unstable. The self-consistent solution for the beam motion is derived by means of a mode analysis of the collective beam motion. This solution yields a criterion for the stability of each collective mode. The expressions also allow for overlapping frequency bands in the beam spectrum and thus are valid over the entire frequency range. Having established the boundaries of stability in this way, the Fokker-Planck equation is used to describe the cooling process. This description does not include collective effects and thus a stable beam must be assumed. Hence the predictions about the cooling process following from the Fokker-Planck equation only make physical sense within the boundaries of beam stability. Finally it is verified that the parameters of the cooling system which give the best cooling results are compatible with the stability of the beam.Comment: 64 pages, latex, 11 eps-figures appended as uuencoded file, german hyphenation corrected I

    Wake potential expansion using Gaussian basis functions

    Get PDF
    A method is described to decompose arbitrary bunch distributions into a set of Gaussian basis functions. This expansion allows the reconstruction of the wake fields generated by the bunch in its vacuum chamber environment. It is shown that the triangular-shaped basis function which have been used so far lead to substantial problems in the wake field representation. The accuracies achieved with gaussian and triangular basis functions are compared. The results show that Gaussian basis functions are more suitable to model the wake fields of the beam

    Transverse coupled-bunch instabilities for non-symmetric bunch fillings

    Get PDF
    A program has been written in order to investigate transverse coupled-bunch instabilities for non-symmetric bunch fillings in the case of a large number of bunches. After a short description of the method used to find the instability growth rates, first results of the program are discussed for the SPS and LHC. In particular, a systematic study of the effect of fluctuations in the bunch populations is presented

    Parasitic Energy Loss in the LEP Superconducting Cavities

    Get PDF
    The energy loss of bunches in the LEP superconducting (SC) cavities has been determined by measuring the closed orbit as a function of current with the beam position monitors located at finite dispersion. This method has already been used in earlier experiments to determine the distribution of the longitudinal impedance of different parts of LEP. In the present experiment the energy loss in two straight sections, containing only SC cavities, was compared with that in sections having both copper cavities and SC cavities. The results confirm the impedance calculations for the two types of cavities. The accuracy of the measurements was considerably improved by determining simultaneously the orbits of bunches with different currents. At the same time with these beam-based impedance measurements, the power dissipation was observed directly by local temperature monitors in different elements: the inter-cavity bellows inside the cryostat, the warm intermodule bellows, and Ferrite absorbers which were installed in two places to reduce the energy leaking out of cavities. These observations were correlated with the change of cryogenics power consumption, and showed an unexpected dependence of energy loss on beam energy

    Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding

    Get PDF
    The focus of this study was to investigate the dispersion state of pure and functionalized carbon nanotubes in polyamide 6, on composites prepared by twin-screw extrusion and then processed by microinjection moulding. Nanocomposites were prepared with different carbonvnanotube compositions, with and without functionalization. The nanotubes were functionalized by the 1,3-dipolar cycloaddition reaction. The dispersion of the carbon nanotube agglomerates was quantified using optical microscopy and image analysis. The effect of functionalization on the polyamide 6/carbon nanotube interface, the nanocomposite morphology and the mechanical and electrical properties were studied. It was observed that the microinjected composites with functionalized carbon nanotubes presented improved dispersion, with smaller carbon nanotube agglomerate area ratio compared to the composites with pure nanotubes. The functionalized nanotubes showed better adhesion to polyamide 6 compared to pure nanotubes, as observed by scanning electron microscopy. The incorporation of carbon nanotubes considerably improved the mechanical properties. The effect of high polymer shear rate on carbon nanotube alignment during microinjection moulding was assessed by comparing the electrical resistivity of the composite after extrusion and after microinjection moulding, through the thickness and along the flow direction. The experiments showed that the mould design and processing conditions significantly affected electrical resistivity.Fundação para a CiĂȘncia e Tecnologia (project PEst-C/CTM/LA0025/2013

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    An Investigation of stochastic cooling in the framework of control theory

    No full text
    This report provides a description of unbunched beam stochastic cooling in the framework of control theory. The main interest in the investigation is concentrated on the beam stability in an active cooling system. A stochastic cooling system must be considered as a closed-loop, similar to the feedback systems used to damp collective instabilities. These systems, which are able to act upon themselves, are potentially unstable. The self-consistent solution for the beam motion is derived by means of a mode analysis of the collective beam motion. This solution yields a criterion for the stability of each collective mode. The expressions also allow for overlapping frequency bands in the beam spectrum and thus are valid over the entire frequency range. Having established the boundaries of stability in this way, the Fokker-Planck equation is used to describe the cooling process. This description does not include collective effects and thus a stable beam must be assumed. Hence the predictions about the cooling process following from the Fokker-Planck equation only make physical sense within the boundaries of beam stability. Finally it is verified that the parameters of the cooling system which give the best cooling results are compatible with the stability of the beam
    • 

    corecore