40 research outputs found

    New insights into lipid-Nucleoside Diphosphate Kinase-D interaction mechanism: Protein structural changes and membrane reorganisation

    Get PDF
    AbstractNucleoside Diphosphate Kinases (NDPKs) have long been considered merely as housekeeping enzymes. The discovery of the NME1 gene, an anti-metastatic gene coding for NDPK-A, led the scientific community to re-evaluate their role in the cell. It is now well established that the NDPK family is more complex than what was first thought, and despite the increasing amount of evidence suggesting the multifunctional role of nm23/NDPKs, the specific functions of each family member are still elusive. Among these isoforms, NDPK-D is the only one to present a mitochondria-targeting sequence. It has recently been shown that this protein is able to bind and cross-link with mitochondrial membranes, suggesting that NDPK-D can mediate contact sites and contributes to the mitochondrial intermembrane space structuring. To better understand the influence of NDPK-D on mitochondrial lipid organisation, we analysed its behaviour in different lipid environments. We found that NDPK-D not only interacts with CL or anionic lipids, but is also able to bind in a non negligible manner to zwitterionic PC. NDPK-D alters membrane organisation in terms of fluidity, hydration and lipid clustering, effects which depend on lipid structure. Changes in the protein structure after lipid binding were evidenced, both by fluorescence and infrared spectroscopy, regardless of membrane composition. Taking into account all these elements, a putative mechanism of interaction between NDPK-D and zwitterionic or anionic lipids was proposed

    Protein encapsulation :microsphere properties and protein integrity

    No full text
    International audienc

    NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin

    No full text
    The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to monoubiqiuitin and exhibits preferences for K63-linked chains. In the present paper, we report the solution NMR structure of the Stam2-VHS domain in complex with monoubiquitin by means of chemical shift perturbations, spin relaxation, and paramagnetic relaxation enhancements. We also characterize the interaction of Stam2-VHS with K48- and K63-linked diubiquitin chains and report the first evidence that VHS binds differently to these two chains. Our data reveal that VHS enters the hydrophobic pocket of K48-linked diubiquitin and binds the two ubiquitin subunits with different affinities. In contrast, VHS interacts with K63-linked diubiquitin in a mode similar to its interaction with monoubiquitin. We also suggest possible structural models for both K48- and K63-linked diubiquitin in interaction with VHS. Our results, which demonstrate a different mode of binding of VHS for K48- and K63-linked diubiquitin, may explain the preference of VHS for K63- over K48-linked diubiquitin chains and monoubiquitin
    corecore