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Nucleoside Diphosphate Kinases (NDPKs) have long been considered merely as housekeeping enzymes. The
discovery of the NME1 gene, an anti-metastatic gene coding for NDPK-A, led the scientific community to
re-evaluate their role in the cell. It is now well established that the NDPK family is more complex than what
was first thought, and despite the increasing amount of evidence suggesting the multifunctional role of
nm23/NDPKs, the specific functions of each family member are still elusive. Among these isoforms, NDPK-D
is the only one to present a mitochondria-targeting sequence. It has recently been shown that this protein is
able to bind and cross-link with mitochondrial membranes, suggesting that NDPK-D can mediate contact
sites and contributes to the mitochondrial intermembrane space structuring. To better understand the influ-
ence of NDPK-D on mitochondrial lipid organisation, we analysed its behaviour in different lipid environ-
ments. We found that NDPK-D not only interacts with CL or anionic lipids, but is also able to bind in a non
negligible manner to zwitterionic PC. NDPK-D alters membrane organisation in terms of fluidity, hydration
and lipid clustering, effects which depend on lipid structure. Changes in the protein structure after lipid bind-
ing were evidenced, both by fluorescence and infrared spectroscopy, regardless of membrane composition.
Taking into account all these elements, a putativemechanism of interaction betweenNDPK-D and zwitterionic
or anionic lipids was proposed.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The NME gene was initially identified by screening for genes asso-
ciated with non-metastatic phenotypes [1]. The gene product was
later identified as a nucleoside diphosphate kinase (NDPK) [2]. The
major role of NDPK isoenzymes is to maintain the pool of different nu-
cleotides within the cell by catalysing the reversible transfer of the
terminal phosphoryl group from a nucleoside triphosphate to a nucle-
oside diphosphate [3]. The neo-synthetized triphosphates are then
used for cell anabolic processes, thus making NDPKs one of the main
actors in the synthesis of macromolecules. The demonstration of the
implication of nm23-H1 in physiopathological processes such as me-
tastasis [4,5] has raised interest in this family of proteins which was
then no longer regarded as an ‘ordinary’ housekeeping enzyme [6].
In humans, ten genes have been reported to code for ten protein
isoforms ranging from NDPK-A to D (group I), nm23-H5 to nm23-H9
(Txl2), and XRP2 (group II) [5]. X-ray crystallography indicates that all
the enzymes from group I show a homohexamerical structure which
possesses a second order symmetry [7–9].
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Among these isoforms, NDPK-D is the only one to present a
mitochondria-targeting sequence. NDPK-D is ubiquitously expressed,
with highest expression levels in the liver, kidneys, bladder and prostate
[10]. This kinase binds to the outer face of the innermitochondrial mem-
brane and was suggested to be associated with mitochondrial contact
sites [8,11–13]. Using site-directed mutagenesis and surface plasmon
resonance, the groups of Lacombe and Schlattner showed that NDPK-D
is able to bind CL-containing liposomes through interaction between a
cationicmotif (Arg89‐Arg90‐Lys91) located at the surface of the hexamer
and negative charges of the CL polar head group [12]. Moreover, NDPK-D
is capable of cross-linking liposomes (since lipid-binding residues are lo-
cated on symmetric faces of its homohexameric structure), and promotes
the transfer of fluorescent lipid probes between liposomes [13]. These
characteristics suggest that NDPK-D can mediate contact sites in mito-
chondria [8] and actively take part in the structuring of themitochondrial
intermembrane space.

To better understand the influence of this protein on mitochondri-
al lipid organisation, we analysed NDPK-D behaviour in different lipid
environments. Intriguingly, we found that NDPK-D not only interacts
with CL or anionic lipids, but is also able to bind in a non-negligible
manner to zwitterionic PC. A hydrophobic component was also
evidenced in the interaction. The effect of NDPK-D onmembrane orga-
nisation was further investigated in terms of fluidity, hydration or
lipid clustering and was found to profoundly depend on lipid struc-
ture. Conformational changes in the protein after lipid binding
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Fig. 1.Percentage of bindingofNDPK-D todifferent liposomes. Binding assayswere carried out in thepresence (dark grey) or not (light grey) of 150 mMNaCl,with150 μg of phospholipids and
14 μg of NDPK-D in 200 μL of 20 mMTris–HCl, pH 7.4, and the percentage of bindingwas determined fromactivitymeasurements in supernatants and pellets after centrifugation. Each column
represents the mean±S.E.M. (bars) of at least three measurements.
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occurred, regardless of the membrane composition model. Finally, we
propose a putative mechanism of interaction between NDPK-D and
zwitterionic or anionic lipids.

2. Materials and methods

2.1. Materials

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) both
extracted fromegg yolkwere from Lipid Products Acyl chain composition
is 32% of 16:0, 2% of 16:1, 11.5% of 18:0, 36% of 18:1, 12.5% of 18:2, and 6%
of 20:4 for PC and 22% of 16:0, 37% of 18:0, 30% of 18:1, and 11% of 18:2
for PE (data from Lipid Products). Cardiolipin from bovine heart (CL),
phosphatidylglycerol fromegg yolk (PG), lactate deshydrogenase andpy-
ruvate kinase were from Sigma.

Dimyristoylphosphatidylglycerol (DMPG), dimyristoylphosphati-
dylcholine (DMPC) and Laurdan were purchased from Fluka. Ultra
pure water was obtained using a Millipore system.

2.2. Bacterial expression and purification of human His-NDPK-D

His-tagged NDPK-D was expressed in Escherichia coli, as described
in [8], using a pET 28a(+) vector. Recombinant NDPK-D was purified
using a modification of an earlier protocol [8]. Briefly, cells were
resuspended in 20 mM NaH2PO4, pH 7.4, sonicated and centrifuged
at 20400 g for 30 min at 4 °C. The supernatant was loaded on a
Ni-NTA column (Qiagen). NDPK-D was eluted with an imidazole gra-
dient and dialysed against 20 mM Tris–HCl, pH 7.4, 0.1 mM EDTA,
0.2 mM DTT. Protein concentration (0.1 g/L) was determined by the
Lowry method using bovine serum albumin as a standard. The purity
of the protein was checked with SDS-PAGE.

2.3. Assay of NDPK activity

NDPK activitywasmeasured using a coupled lactate deshydrogenase/
pyruvate kinase assay [14]. Decrease of the absorbance at 340 nm was
measured. The assays were carried out at 25 °C in 1 mL of reaction mix-
ture containing 50 mM Tris–HCl, pH 7.4, 75 mM KCl, 5 mM MgCl2,
1 mM ATP, 0.1 mM NADH, 1 mM phosphoenolpyruvate, 1 mM TDP
and 5U of pyruvate kinase and lactate deshydrogenase.

2.4. Preparation of liposomes

Liposomes were prepared by hydration and extrusion as previously
described [15]. Briefly, chloroform solutions of the required lipids were
mixed to reach the desired molar ratio, i.e.: PC–PE–CL (2:1:1), PC
(100%), DMPC (100%), PC–PG (3:2) and DMPC–DMPG (3:2). Dried lipids
were then hydrated (20 mg/mL) in 20 mM Tris–HCl, pH 7.4, 0.1 mM
EDTA buffer and dispersed to produce MLV. The lipid suspension was
then subjected to 6 freeze/thaw cycles and finally extruded 19 times
through a polycarbonate membrane (Avanti Polar Lipids, Alabaster, AL)
with 0.4 and0.2 μm-diameter pores using amini-extruder [16]. During li-
posome preparation, lipids were kept at temperatures higher than their
gel to liquid crystal transition temperature.

2.5. Interaction of proteins with liposomes

Whatever the phospholipid composition of liposomes, 10 μg of
NDPK-Dwas incubated at 25 °C during 20 minwith 150 μg of liposomes.
The mixture was then centrifuged at 160000 g during 1 h with a
Beckman Airfuge. The supernatant was separated from the pellet and
the latter was resuspended in 20 mM Tris–HCl pH 7.4, 0.1 mM EDTA so-
lution.We determined NDPK activity in the presence or in the absence of
liposomes, whatever the phospholipid composition. As it does not differ,
the percentage of binding was determined using the ratio of NDPK activ-
ity in the pellet over the total activity (pellet+supernatant).

2.6. Fluorescence measurements

Fluorescence measurements were performed with a Hitachi F4500
fluorometer (150 W Xe). The excitation and emission band-pass values
were fixed at 5 nm. Spectra were recorded on the resuspended pellets
using a 1 cmpath length thermostated quartz cell. All fluorescence spec-
tra were corrected for the baseline spectra of the buffer solution to re-
move the contribution of the Raman band.

To characterise phospholipid phase coexistence and vesicle phys-
ical state fluctuation upon protein binding, Laurdan, a fluorescent
probe for which the excitation and emission spectra are sensitive
to the environment, was added to the liposomes. Laurdan-specific
fluorescence properties allowed us to calculate the generalised
polarisation parameter (GP) which was used to determine the ef-
fect of NDPK-D on membrane fluidity. The excitation GP was cal-
culated as follows:

GPexc ¼ Ig−Il
� �

= Ig þ Il
� �

:

Where Ig and Il are the fluorescence intensities at the maximum
emission wavelength in the gel (440 nm) and in the liquid crystalline
(490 nm) phases at a fixed excitation wavelength (360 nm) [17].



908 L. Francois-Moutal et al. / Biochimica et Biophysica Acta 1828 (2013) 906–915
Experimentswith Laurdanwere conducted as follows: phospholipids
and Laurdan in a chloroform solutionweremixed in a 400:1 molar ratio,
and the liposomeswere then prepared as previously described. Emission
spectra were recorded between 420 and 550 nm, at a fixed excitation
wavelength of 360 nm at 37 °C, on 150 μg Laurdan-liposomes in the
presence of 14 μg ofNDPK-D in afinal volumeof 150 μL. The phospholip-
id to protein molar ratio was 29000.

2.7. Monomolecular film formation at the air buffer interface and surface
pressure measurements

A circular Teflon trough was filled with 30 mL of 20 mM Tris–HCl
buffer, pH 7.4. Monolayers were formed on a clean air-buffer interface
by spreading the phospholipids dissolved in chloroform–methanol
(4:1) to attain a lateral surface pressure of about 30 mN/m. After
pressure stabilisation, a final concentration of 4 nM of NDPK-D was
injected in the subphase.

2.8. Brewster angle microscopy

Themorphology of lipid andmixed lipid/NDPK-Dmonolayers at the
air/water interface was observed using a Brewster angle microscope
(NFT, Göttingen, Germany) mounted on an R&K Langmuir trough
(Riegler and Kirstein GmbH, Wiesbaden, Germany). The Langmuir
trough and the Brewster angle microscope being in a closed environ-
ment, no significant evaporation of the subphase was observed during
the experiments. The microscope was equipped with a frequency dou-
bled Nd:Yag laser (532 nm, i.e., 50 mWprimary output), a polarizer, an
analyzer, and a CCD camera. The spatial resolution of the BAM was
about 2 μm and the image size was 430×540 μm. Camera calibration
was necessary to determine the relationship between themeasured in-
tensity parameter, the grey level (GL), and the reflectance (R). This per-
mitted us to calculate the reflectance as follows: R=(GL−BG)×F
where GL is the recorded grey level value, BG is the background value
of the camera and F is the calibration factor for each shutter speed. For
ultra thin films, the reflectance depends on both the thickness and re-
fractive index of the monolayer: R~λd2n2 where λ is the laser wave-
length, d the film thickness and n the refractive index of the interfacial
film. Consequently, one can use the measured reflectance to estimate
the average, or local, thickness of the film.

The monolayer being in a fluid state, a refractive index of 1.46 was
used [18,19]. For the mixed protein–lipid monolayer the refractive
index is considered to be close to that of the pure lipid because the
density of lipids at the interface was relatively high and the refractive
index of proteins generally varies over a relatively small range [20].

2.9. Infrared spectra

Liposomes (PC or PC–PE–CL 2:1:1) were prepared as described
above, using 20 mM Tris–HCl–deuterium oxide (2H2O) (p2H 7.4) buff-
er. The p2H was measured with a glass electrode and was corrected
by a value of 0.4 according to Glasoe and Long [21].

For the assay with protein, the liposome suspension was mixed
with 14 μg of enzyme in 20 mM Tris–HCl buffer, pH 7.4, and then in-
cubated 20 min. Separation of liposome-bound and unbound protein
was performed by centrifugation at 160000 ×g for 40 min (Beckman
Airfuge). The pellet was resuspended in 8 μL of 20 mM Tris–HCl–2H2O
(p2H 7.4).

Samples were loaded between two BaF2 circular cells, with a 56 μm
Teflon spacer. Fourier Transformed Infrared (FTIR) spectrawere recorded
with a Nicolet iS10 FTIR spectrometer which was continuously purged
with dry air; then 256 scans were collected and co-added per sample
spectrum, and Fourier-transformed for each sample. Each FTIR spectrum
was representative of at least three independent measurements. The in-
frared spectra of buffer and residual water vapour were substracted
from the infrared spectrum of the sample. Spectra were deconvoluted
using PeakFit (Scientific Solutions, Switzerland).

3. Results

3.1. NDPK-D binds to both anionic and zwitterionic membranes

Our first aim was to compare NDPK-D binding to lipids of different
polar head and acyl chain compositions. As described in Materials and
methods section, liposome‐bound NDPK-D was separated from the
free protein by centrifugation and NDPK activity was measured in
each fraction. The percentage of NDPK-D activity recovered in the
LUV-bound fraction is shown in Fig. 1. Binding of NDPK-D to PC–
PE–CL or PC–PG membranes was 75% in our conditions (phospho-
lipids to protein molar ratio of 29000). In the same conditions, but
in the absence of liposomes, less than 5% sedimentation of NDPK-D
was observed. We considered that this percentage is negligible com-
pared with those obtained in the presence of liposomes. Whatever
the nature of the negatively charged phospholipid, PG or CL, the bind-
ing percentage remained unchanged (75% for PC–PG (3:2) against
73% for PC–PE–CL (2:1:1)), thus, NDPK-D interaction seems to be inde-
pendent of the nature of the anionic polar head. The percentage of bind-
ing to saturated and unsaturated phospholipids was similar (about 70%
for DMPC:DMPG and 75% for PC:PG), which indicated that the satura-
tion of the acyl chains of the phospholipids had no major influence on
the NDPK-D binding.

Interestingly, in the presence of a zwitterionic membrane (PC), the
percentage of bound NDPK-D was about 45%. Thus, although binding
of NDPK-D activity was higher with anionic phospholipids, a non negli-
gible interaction was found with the zwitterionic lipid PC. In order to
obtain further information about the nature of the interaction, the
same experiment was repeated in the presence of 150 mM NaCl. In
these conditions, the percentage of NDPK-D bound to PC liposomes de-
creased from 45% to 25%, while the percentage of NDPK-D bound to
negatively charged liposomes, PG or CL, decreased from 70% to 54%. In-
creasing NaCl concentration up to 0.3 M did not further reduce the
amount of NDPK-D bound to liposomes (not shown). Thus, NDPK-D
can bind to all types of vesicles tested even at a non-physiologically
high ionic strength.

3.2. Structural changes of NDPK-D after membrane binding

We next used fluorescence and FTIR spectroscopies to determine
whether protein conformation was modified upon binding to lipo-
somes with different phospholipid compositions.

First, NDPK-D intrinsic fluorescence emission spectra were recorded
in the absence of lipids or after binding to liposomes and removal of the
unbound protein. Maximal emission wavelengths were determined
with an excitation wavelength of 295 nm and are shown in Table 1.

The 340 nmmaximum emission wavelength of the protein in the
absence of lipids indicates a rather hydrophilic average environment
of the tryptophan side chain. In the presence of liposomes, whatever
the phospholipid composition, the maximum was shifted to lower
values (335–333 nm). These results suggest that at least one of the
tryptophan residues is directly affected by the binding process and/
or that NDPK-D binding to membranes changes the environment of
these tryptophan residues into a more hydrophobic one. The pres-
ence of either 150 or 300 mM NaCl has no effect on this shift.

We also used FTIR spectroscopy to assess the effect of NDPK-D
binding to PC–PE–CL or PC liposomes on its structure. The amide I
band, which is dominated by carbonyl vibration, reflects the protein's
secondary structure and is therefore an important tool for analysing
changes in protein conformation. Spectra of the amide I region of
free or bound NDPK-D are presented in Fig. 2A and B. Second deriva-
tive was used to locate position of the different absorption bands on



Table 1
Maximum emission wavelength of NDPK-D alone or bound to liposomes in the presence
or absence of 150 mM NaCl.

NDPK-D Unbound PC DMPC PC–PG DMPC–DMPG PC–PE–CL

λ Max (nm) 340 334 333 335 333 333
λ Max (nm)+NaCl 340 333 334 335 333 334
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the spectra (as shown in Fig. 2A and B, grey lines) which were further
deconvolunted using Peak-FitTM software (Fig. 2C and D).

As expected from the crystallographic structure, the free NDPK-D IR
spectrum (Fig 2A) exhibited a main band around 1660–1650 cm−1,
characteristic of proteins with a high proportion of helix struc-
ture [8,22,23]. Second derivative spectrum indicated that the amide I re-
gionwas indeedmade of several components, two ofwhichwere located
in the region of α helix vibration bands, at 1654 cm−1 and 1662 cm−1.
Another major band located at 1644 cm−1 can be attributed to random
structures [22]. Several peaks/contributions were also present in the
1630–1612 cm−1 and 1670 and 1690 cm−1 region. Both band splitting
Fig. 2. Infrared spectra (black), in the region of the amide I band, of NDPK-D bound (B) or n
components of the amide I band of the NDPK-D alone, or bound to PC–PE–CL liposomes (D
and band position are characteristic of different types of beta sheet
structures [22,24].

As shown in Fig. 2B, NDPK-D binding to liposomes modified the
amide I region of the protein IR spectrum. The two bands observed in
the α helix region were shifted to lower wavenumbers: 1649 cm−1

and 1659 cm−1. Moreover, deconvolution of spectra indicated that
binding of NDPK-D to liposomes also changed the area of the different
bands as shown in Fig. 2D. The highwavenumber (alpha helix contribu-
tion) represented only 14% of the spectrum of the protein alone instead
of 31% for the bound protein, whereas upon protein binding, the lower
wavenumber component was reduced from 24% to 19%. In the β-sheet
region, the 1632 cm−1 component decreased 3 fold, from 15% to 5%,
when NDPK-D bound to the membrane. It should be noted that the
1680 cm−1 band increased in the presence of liposomes (3.5% versus
10%). The other bands (1612 cm−1, 1622 cm−1, 1672 cm−1 and
1690 cm−1) were onlymarginallymodified by the interaction between
NDPK-D and liposomes. The amide I bands on spectra recorded with
NDPK-D bound to either PC (not shown) or PC–PE–CL liposomes
(Fig. 2B) were identical.
ot to PC–PE–CL (A). In grey is the second derivative. (C) Fitting curves of the different
). (E) Percentages of the peak area of each component of the amide I spectra.

image of Fig.�2
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3.3. NDPK-D modifies membrane fluidity and organisation

3.3.1. NDPK-D effect on Laurdan fluorescence in liposomes
The fluorescence properties of Laurdan were used to monitor local

changes in the immediate vicinity of the probe due to protein binding.
Laurdan GP (Generalised Polarisation, see Experimental section) allows
one to study variations of themembrane physical state. Liposomeswere
made of either unsaturated PC–PE–CL (2:1:1) or saturated DMPC–
DMPG (3:2) or DMPC. The use of saturated phospholipids allowed us
to work at temperatures close to the phase transition temperature of
the lipids and thus to enhance the effect of the protein binding on the
mobility of solvent molecules surrounding Laurdan. Data were ex-
pressed as the variation in GP observed with and without NDPK (delta
GP) and showed that NDPK-D binding only marginally modified the
GP value of Laurdan inserted in DMPC (ΔGP=0.009) (Fig 3) or PC lipo-
somes (data not shown). This indicates thatNDPK-D did not significant-
ly affect the physical state of vesicles exposing phosphatidylcholine
polar heads. However, a significant increase in GP was recorded with
vesicles containing anionic phospholipids. Indeed, the binding of the
protein to DMPC–DMPG (3:2) vesicles leads to a ΔGP value of 0.087.
NDPK-D had a more moderate influence at the liposome membrane
level of PC–PE–CL (2:1:1) with an increase in the GP value of 0.030.
This indicates a modification of the mobility of water molecules sur-
rounding Laurdan after protein binding.
3.3.2. Protein effect on lipid infrared absorption bands
Alterations in hydrogen bonding, orientation of the head group, and

differences in chain packing of phospholipids after NDPK-D binding to
the phospholipid bilayer were further monitored at the O\P\O, C_O
and CH2 stretching vibration level using infrared spectroscopy [25,26].

Binding of NDPK-D to liposomes that do or do not contain anionic
charges, resulted in a shift of the symmetric PO2

− stretching band re-
spectively from 1092 to 1070 cm−1 for both PC–PE–CL and PC lipo-
somes (Fig 4). This can be interpreted as alterations in head group
hydration or increased hydrogen bonding at the polar surface of
phospholipids following protein binding [25].

The phospholipid ester bonds (C_O) stretching vibration of the
lipid bilayer were also affected by the binding of NDPK-D (Fig 5). In
the absence of protein, with both PC and PC–PE–CL liposomes a single
broad carbonyl peak centred around 1733 cm−1 was observed. This
broad carbonyl peak was composed of two separate components, as
indicated by second derivative minima (not shown): a “dehydrated”
carbonyl (1742 cm−1) and a “hydrated” carbonyl (1727 cm−1) [26].
Addition of NDPK-D (Fig. 5) induced an increase in the 1742 cm−1

contribution, without change in the position of the two components.
This thus suggests an increase in the content of dehydrated carbonyl
bonds.

The location of the C\H stretching vibration is an indicator of the
C\H bond motional freedom: the higher the wavenumber, the greater
Fig. 3. Variation of Laurdan excitation GP in different liposomes in the presence of NDPK-D.
Each column represents the mean±S.E.M. (bars) of at least three measurements.
the acyl chain mobility. Minute variations induced by protein binding
can thus be evidenced as a shift in this very sensitive vibrational band
[27]. The effect of NDPK-D binding on the CH2 vibration was dependent
on phospholipid head group. Indeed, protein binding to zwitterionic li-
posomes induced no significant changes on phospholipid asymmet-
ric (Fig. 6) and symmetric (not shown) CH2 stretching bands (2924
and 2853 cm−1 respectively). On the contrary, adsorption of
NDPK-D on PC–PE–CL vesicles led to a small shift of symmetrical
and asymmetrical CH2 bands from 2853 to 2854 cm−1 and from
2924 cm−1 to 2925 cm−1 respectively.
3.3.3. Lipid clustering on monolayers after NDPK-D interaction
To see whether NDPK-D was able to perturb the lateral organisa-

tion of the membrane, phospholipid monolayers were used as mem-
brane models and changes in the lateral phospholipid organisation
were followed by Brewster angle microscopy (BAM). First, a phos-
pholipid mixture of PC–PE–CL in a 2:1:1 molar ratio, mimicking the
composition of the inner mitochondrial membrane, was spread at the
air/buffer interface at a lateral surface pressure of about 30 mN/m. At
Fig. 4. Infrared spectra in the region of the PO2
− stretching vibration. 160 μg of PC–PE–CL

(A) or pure PC (B) alone (grey) or with (black) 14 μg of NDPK-D. Samples were
suspended in 8 μL of 20 mM Tris–HCl–2H2O, p2H 7.4, as described in Materials and
methods.

image of Fig.�4
image of Fig.�3
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this surface pressure it is generally considered that lipids have the same
thermodynamic characteristics as in biological membranes [28]. BAM
images of the PC–PE–CL mixture showed a homogeneous surface
(Fig. 7A). About 10 min after injection of 4 nM NDPK in the buffer
phase, bright spots began to appear and increased in number but not
in size. The local thickness at these bright spots was estimated at
about 6.5 nm (using a refractive index of 1.46, see Experimental sec-
tion). As a control, the experiment was also done without protein. The
general aspect of the lipid monolayer as well as the local thickness of
themonolayer (1.6 nm) remained unchanged over the course of the ex-
periment (not shown).

The same experiments have been performed with PC, PE, PC–PE
(3:1) and with CL monolayers. With a PC (Fig. 7B), PE or PC–PE mono-
layers (not shown), BAM images showed a homogeneous surface with
no bright domains. Twohours after injection of theNDPK-D underneath
the monolayer, BAM images were quite similar to those obtained in the
absence of protein.

BAM images of a pure CL monolayer at about 30 mN/m, exhibited a
homogeneous surface without any bright domains. However, 30 min
after injection, BAM images exhibited bright spots as shown in Fig. 7C.
The number of bright spots increased with time, more than in the pres-
ence of PC–PE–CL, indicating that the formation of such bright clusters
was associated with NDPK-D interactions with CL.
Fig. 5. Infrared spectra in the region of the ester stretching vibration. 160 μg of PC–PE–CL
(A) or pure PC (B) alone (grey) orwith (black) 14 μg ofNDPK-D. Sampleswere suspended
in 8 μL of 20 mM Tris–HCl–2H2O, p2H 7.4, as described in Materials and methods.
3.3.4. Structural models of NDPK-D binding to CL, deduced from the BAM
pictures

As mentioned above, on a pure CL monolayer no spots were ob-
served before NDPK-D injection, but addition of NDPK-D induced the
formation of bright aggregates. Views of the CL monolayer in the pres-
ence and absence of NDPK-D were reconstructed. The aspect of the
pure CL membrane was homogenous with a maximum thickness of
1.4 nm (Fig. 7D), while in the presence of NDPK-D the interfacial film
was irregular with a maximum thickness of 6.5 nm (Fig. 7E).

The film thickness profile was calculated along the white line in
image 7F from image 7C. Based on the brightness of the BAM pictures
indicating changes in the reflectivity at the interface, the apparent
thickness of the interfacial film was modelled at each point of the
BAM picture.

4. Discussion

Nucleoside diphosphate kinases (NDPKs) are nucleoside-
metabolising enzymes participating in cellular high energy phosphoryl
transfer as well as in several apparently unrelated biological processes.
Several isoforms of NDPK have been reported, which differ in their spec-
ificity and subcellular localization. NDPK-D, the mitochondrial isoform,
has been shown to be involved in several physiological processes such
as fatty acid metabolism, proteins and nucleic acid synthesis, and is
known to interact with Krebs cycle enzymes. Moreover, although the
role of NDPK-D in cancer progression is not known, overexpression of
this protein has been reported in colorectal and kidney carcinoma [29].

Since NDPK-D is retrieved at the mitochondrial membrane, we
analysed its interaction with phospholipids on two complementary
systems, liposomes and monolayers.

A first aim of this work was to assess NDPK-D lipid binding part-
ner(s) at the membrane. Intriguingly, we observed that NDPK-D not
only interacts with liposomes containing anionic lipids, but also shows
a non negligible binding to zwitterionic lipids such as PC. Moreover,
this interaction is not abolished in the presence of NaCl, suggesting
Fig. 6. Infrared spectra in the region of the asymmetric CH stretching vibration. 160 μg
of PC–PE–CL (A) or pure PC (B) alone (grey) or with (black) 14 μg of NDPK-D. Samples
were suspended in 8 μL of 20 mM Tris–HCl–2H2O, p2H 7.4, as described in Materials
and methods.

image of Fig.�6
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Fig. 8. Monomer of NDPK-D: (PDB: 1ehw) visualised with Accelrys ViewerLite5.0. The
flexible region is coloured in red, the binding triad in blue and the tryptophans in yellow.

Fig. 7. BAM images of (A) PC–PE–CL, (B) PC and (C) CL monolayers at 30 mN/m, at different incubation times. Shutter speed was 120 s−1 for each image. Theoretical 3D simulation
of a CL monolayer in the absence (D) or presence (E) of NDPK-D. (F) Film thickness profile along the white line in image C.
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that the interaction process is not exclusively electrostatic but also in-
volves a stronghydrophobic component.Wedecided thus to investigate
whether this multi-component interaction process was accompanied
by protein structural modifications.

5. Effect of membrane binding on protein structure

In the presence of liposomes, a 5–7 nm blue-shift of NDPK-D trypto-
phanmaximum emissionwavelength is observed, indicating that the en-
vironment of one ormore tryptophan residue's side chain becomesmore
hydrophobic. It has been shown that NDPK-D binding to membranes in-
volves the sequence Arg89-Arg90-Lys91 which is localised in a hairpin
between the αA and α2 helices (Fig. 8) [12]. Among NDPK-D trypto-
phans, residue 166, which is close to the hairpin (Fig. 8), may be the
one most affected by membrane binding. The blue shift could result
from a direct interaction of the tryptophan side chain with the lipid bi-
layer as described for a number of peptides or proteins (human dystro-
phin [30], LL-37 [31], amphibian antimicrobial peptide DD K [32], and
melittin [33]). Alternatively, the spectral shift could be the result of a
conformational change of the protein with a tryptophan that would be-
come buried within the structure.

The effect of NDPK-D binding on its secondary structure was then
studied by infrared spectroscopy. NDPK-D infrared spectrum in the
amide I band region was clearly dominated by α helical contribution
as shown in Fig. 2A. Secondary derivative and deconvolution spectra
reveal that this contribution is due to two distinct components at
1662 and 1654 cm−1, indicative of the coexistence of two types of
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Fig. 9. Cartoon model of NDPK-D interaction with CL (A) or with PC membranes (B). Only the outer leaflet of the bilayer was represented. After binding to lipids, NDPK-D undergoes
conformational changes and inserts part of the molecule between lipid head groups. Insertion leads to water molecule removal and moves lipid molecules apart. This effect is more
pronounced with CL membranes and allows a higher mobility at the acyl chain level.
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α helical structures. This is reminiscent of what has been shown for
the secretory phospholipase A2 once bound to lipid bilayers [34], bac-
teriorhodopsin [35] and oxaloacetate decarboxylase [36]. Since the
position of vibrational bands depends on hydrogen bonding [24],
the band at 1662 cm−1 is thus likely to correspond to more flexible
and more dynamic α helices than the 1654 cm−1 one. The region of
β-sheet vibrational bands also presented several distinct contribu-
tions at 1622, 1633, 1672 and 1682 cm−1 considered as a mixture
of antiparallel β sheets, β turns and open loops [22].

Binding of NDPK-D on PC–PE–CL liposomes induced a modification
of the amide I spectra. Overall, the protein–lipid interaction shifted
the different contributions to lower wavenumbers, suggesting that
lipid binding altered hydrogen bonding. The proportions of the main
secondary structureswere alsomodified. On the onehand, the presence
of lipids provokes a clear decrease of the contribution of the 1654 cm−1

band in the helical region of the spectra, and of the 1630 cm−1 band, at-
tributed to antiparallel sheets. On the other hand, the ~1660 cm−1 con-
tribution, attributed to more “flexible” α helices, increased from 14% to
31%. A net increase in the 1680 cm−1 contribution was also observed.
The latter could indicate that the secondary structure of the bound pro-
tein exhibits more beta turns [22] or shorter alpha helices [37].

It should be noted that both the blue shift of Trp fluorescence emis-
sion and the change in secondary structure occurred after binding ei-
ther to PC or CL-containing vesicles, indicating similar conformational
changes whatever the nature of the phospholipid polar head group.

6. Modification of lipid organisation by protein binding

A structural function of NDPK-D at the membrane level has been re-
cently proposed [10], therefore a closer analysis of the NDPK-D-induced
modifications at themembrane level is required. Fluorescence spectros-
copy, and more specifically Laurdan polarity sensitivity, was first used.
The GP parameter, which accounts for polar changes in the immedi-
ate vicinity of the probe, increased when CL- or PG-containing
liposomes were in the presence of NDPK-D. This effect can be
interpreted as a modification of this region organisation towards a
more “rigid” state [17] in the presence of the protein in interaction
with anionic polar head groups. Interestingly, despite the fact that
NDPK-D interacts with zwitterionic membranes, it did not modify
Laurdan fluorescence characteristics when incorporated into PC lipo-
somes. This suggests that the interaction mechanism differs according
to the charge of the membrane and that NDPK-D more easily modifies
the polarity of Laurdan environment in a negatively charged mem-
brane. Meanwhile, infrared measurements showed that binding of
NDPK-D to both anionic and zwitterionic membranes triggers dehydra-
tion and loss of hydrogen bonding both at the level of phosphates and at
the level of ester bonds (Figs. 4 and 5). Further investigation was
conducted to determine the position of asymmetric and symmetric
CH vibration bands and to illustrate the degree of ordering of the
acyl chains in the bilayer. In the absence of NDPK-D, PC and PC–PE–
CL liposomes presented CH2 asymmetric and symmetric stretching
bands at 2924 and 2853 cm−1, respectively (Fig. 6). No significant
spectral shifts were recorded after NDPK-D binding to PC liposomes.
On the contrary, when NDPK-D was added to PC–PE–CL liposomes, a
small but reproducible shift to higher wavenumbers was observed
for both asymmetric and symmetric CH2 bands. This shift of the
acyl chain vibration band towards higher wavenumbers, which is
in the same range as those previously reported in the literature for
peptides or proteins interacting with lipid membranes [27,38–41]
suggests a greater motional freedom of the CH2 groups of lipids,
and can be interpreted as an increase in acyl chain fluidity.

This result may seem to be in contrast with the effect illustrated
by Laurdan experiments and GP measurements. On the one hand
fluorescence experiments with Laurdan indicate that NDPK-D

image of Fig.�9
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induces a clear decrease in water content of the probe environment,
which is generally associated with a decrease in membrane fluidity.
On the other hand, FTIR data show a twofold effect of NDPK-D on
the CL-containing membrane: a decrease in hydration at the polar
head and ester bond level, together with an increase in the mobility
of acyl chains. The first effect observed on FTIR spectra is in line with
Laurdan experiments, as protein binding may chase water molecules
from the polar region leading to dehydration and decrease in motil-
ity. The second effect on the acyl chains can be tentatively explained
by protein splitting apart some lipid molecules and thus increasing
the chain mobility. We suggest that this change takes place deeper
in the lipid bilayer and is outside Laurdan direct environment. In-
deed, Laurdan fluorescent moiety is located in the bilayer at the
level of the glycerol backbone [42] and consequently is not suitable
to monitor acyl chain modification.

To provide deeper insight into the forces that govern this interac-
tion, we proposed a putative model for NDPK-D interaction with an-
ionic or zwitterionic membranes (Fig. 9A and B respectively). As
NDPK-D binding to liposomes results in dehydration of lipid head
groups and as NaCl reduces the degree of binding, we can infer that
a first step in the interaction is of electrostatic nature.

Three cationic residues (Arg89‐Arg90‐Lys91) are known to be in-
volved in NDPK-D binding to CL [12]. The same residues may be in-
volved in NDPK-D interaction with PC. Although globally neutral, PC
presents a partial negative charge on the phosphate group. Some pro-
teins or peptides were described in the literature to interact with this
partial charge. For instance, melittin, an amphiphilic peptide of bee
venom, is able to interact with PC membranes [43] inducing a confor-
mational change at the phospholipid head group, characteristic of a
response of PC head group to a positively charged surface.

Therefore, in what NDPK-D is concerned, positive charges on the
“top” surface may be involved in the interaction both with PC and
CL phosphate moiety. However, these charged residues are not the
only ones involved in the interaction as the binding subsists in the
presence of NaCl revealing another component which could be of hy-
drophobic nature. Proteins or parts of the proteins can insert into the
membrane, thus chasing water molecules from the hydration layer of
the ester bonds, and decreasing Laurdan polarity. This could corre-
spond to a loop or to hydrophobic amino acids inserting into the
membrane. A tempting hypothesis concerns the Trp residues. The
maximum fluorescence emission wavelength shift, from 340 nm to
335–333 nm after protein binding to lipids, is in the same order of
magnitude as that of peptides and proteins inserting into the mem-
branes, (human dystrophin [30], LL-37 [31], amphibian antimicrobial
peptide DD K [32], and melittin [33]), into a more hydrophobic envi-
ronment [44]. We can draw a parallel with a study performed on se-
creted phospholipase A2 [45] which showed that this protein binds to
PCmembranes through a complex mixture of electrostatic and hydro-
phobic interactions and that one of the protein tryptophans (Trp 31)
in essential for this interaction. Another example refers to melittin
interacting with PC and PG in a 2-step mechanism, initial electrostat-
ic, followed by re-orientation and/or insertion of peptide into hydro-
phobic membrane core [46].

Moreover, present data indicated that themechanism thatmediates
the binding of NDPK-D depends of the nature of the phospholipid-
containing membranes. In the case of CL, an increase in the acyl chain
mobility, in addition to a dehydration effect, is observedwhich suggests
that NDPK-D deeper penetrates into the CL than PC layer as already
mentioned.

Brewster Angle Microscopy, performed on PC–PE–CL (2:1:1)
monolayer used as a leaflet model system of the inner mitochondrial
membrane, allowed us to monitor NDPK-D ability to disturb the
phospholipid arrangement within the membrane. When injected
under this monolayer, NDPK-D induced the formation of bright
spots which, with time, increased in number but not in size. The av-
erage thickness of these spots was about 6.5 nm, the expected size of
the NDPK-D hexamer (5 nm) bound to themonolayer (1.6 nm), thus
confirming that we are dealing with lipid–protein complexes.

On a PC (Fig. 7B), PE or mixed PC–PE monolayer (not shown), and
at similar surface pressure, no bright regions were observed. This
would suggest that CL is mandatory for protein–lipid cluster forma-
tion. The clustering effect of NDPK-D on a pure CL monolayer was in-
creased compared to that on PC–PE–CL, as the bright spots were more
numerous and larger. Thus clustering can occur in the presence of
protein and this phenomenon requires the presence of cardiolipin.

Such results may have important physiological consequences as,
in view of CL roles in the mitochondrial membrane [47,48] a spatially
defined distribution of this phospholipid is likely to affect metabolic
processes but also mitochondrial dynamics and shape. A similar ef-
fect was reported on a system composed of CL and mitochondrial
creatine kinase (mtCK). Previous studies showed that mtCK has a
structural role, participating in the morphology of mitochondria
[49]. Moreover, experiments performed with CL-containing mono-
layers or liposomes showed that this protein was able to induce seg-
regation of CL [18,50,51]. Although mtCK and NDPK-D are
phylogenetically distinct, they are both homo-oligomers exhibiting
a second order symmetry with membrane-binding motifs exposed
on both symmetrical faces [8,52]; they also have the capacity to an-
chor CL-containing membranes, to cross-link membranes and trans-
fer lipids [12,13]. The tissue-specific expression level of NDPK-D and
mtCK is inversely related, particularly in liver, where NDPK-D is
highly expressed and mtCK is undetectable [10].

In this work, we have shown the ability of NDPK-D to affect the
membrane fluidity (decreasing the hydration of esters and PO groups
of the phospholipidmembrane and increasing the acyl chainmobility)
and cause the formation of CL clusters. This result reinforces the as-
sumption that NDPK-D and mtCK could play similar roles in main-
taining mitochondrial structure [10]. However, there are significant
differences in their behaviour with respect to membrane binding.
MtCK interaction with anionic membranes results in a decrease of
the phospholipids acyl chain fluidity [52], whereas NDPK-D induced
an increase of the acyl chain mobility. Contrary to mtCK, NDPK-D
can interact with PC and its binding to anionic membranes is not sen-
sitive to ionic strength. It should be noted that differences in the shape
of liver (where NDPK-D is highly expressed) and heart mitochondria
(where mtCK is abundant) have previously been described [53]. If
both proteins are key factors in shaping mitochondria, then distinct
behaviours of the two proteins might be one of the origins of the dif-
ference of mitochondrial shape observed between the liver and heart.
Acknowledgements

Weare very grateful to Vincent Fitzpatrick for correcting the English,
and to Dr. Marie-Lise Lacombe for helpful discussions and suggestions
and for providing the plasmid for NDPK-D E.coli recombinant expres-
sion. We acknowledge funding from the University Lyon 1 and the
CNRS.
References

[1] P.S. Steeg, G. Bevilacqua, R. Pozzatti, L.A. Liotta, M.E. Sobel, Altered expression of
NM23, a gene associated with low tumor metastatic potential, during adenovirus
2 Ela inhibition of experimental metastasis, Cancer Res. 48 (1988) 6550–6554.

[2] V. Wallet, R. Mutzel, H. Troll, O. Barzu, B. Wurster, M. Veron, M.L. Lacombe,
Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and
Awd proteins involved in mammalian tumor metastasis and Drosophila develop-
ment, J. Natl. Cancer. Inst. 82 (1990) 1199–1202.

[3] I. Lascu, P. Gonin, The catalytic mechanism of nucleoside diphosphate kinases,
J. Bioenerg. Biomembr. 32 (2000) 237–246.

[4] M. Boissan, S. Dabernat, E. Peuchant, U. Schlattner, I. Lascu, M.L. Lacombe, The
mammalian Nm23/NDPK family: from metastasis control to cilia movement,
Mol. Cell. Biochem. 329 (2009) 51–62.

[5] M.L. Lacombe, L. Milon, A. Munier, J.G. Mehus, D.O. Lambeth, The human
Nm23/nucleoside diphosphate kinases, J. Bioenerg. Biomembr. 32 (2000) 247–258.



915L. Francois-Moutal et al. / Biochimica et Biophysica Acta 1828 (2013) 906–915
[6] D. Roymans, R. Willems, D.R. Van Blockstaele, H. Slegers, Nucleoside diphosphate
kinase (NDPK/NM23) and the waltz with multiple partners: possible conse-
quences in tumor metastasis, Clin. Exp. Metastasis 19 (2002) 465–476.

[7] M.F. Giraud, F. Georgescauld, I. Lascu, A. Dautant, Crystal structures of S120G mu-
tant and wild type of human nucleoside diphosphate kinase A in complex with
ADP, J. Bioenerg. Biomembr. 38 (2006) 261–264.

[8] L. Milon, P. Meyer, M. Chiadmi, A. Munier, M. Johansson, A. Karlsson, I. Lascu, J. Capeau,
J. Janin, M.L. Lacombe, The human nm23-H4 gene product is a mitochondrial nucleo-
side diphosphate kinase, J. Biol. Chem. 275 (2000) 14264–14272.

[9] S. Morera, M.L. Lacombe, Y. Xu, G. LeBras, J. Janin, X-ray structure of human nucleoside
diphosphate kinase B complexed with GDP at 2 A resolution, Structure 3 (1995)
1307–1314.

[10] M.L. Lacombe, M. Tokarska-Schlattner, R.F. Epand, M. Boissan, R.M. Epand, U.
Schlattner, Interaction of NDPK-D with cardiolipin-containing membranes: structural
basis and implications for mitochondrial physiology, Biochimie 91 (2009) 779–783.

[11] V. Adams, W. Bosch, J. Schlegel, T. Wallimann, D. Brdiczka, Further characteriza-
tion of contact sites frommitochondria of different tissues: topology of peripheral
kinases, Biochim. Biophys. Acta 981 (1989) 213–225.

[12] M. Tokarska-Schlattner, M. Boissan, A. Munier, C. Borot, C. Mailleau, O. Speer,
U. Schlattner, M.L. Lacombe, The nucleoside diphosphate kinase D (NM23-H4)
binds the inner mitochondrial membrane with high affinity to cardiolipin and cou-
ples nucleotide transfer with respiration, J. Biol. Chem. 283 (2008) 26198–26207.

[13] R.F. Epand, U. Schlattner, T. Wallimann, M.L. Lacombe, R.M. Epand, Novel lipid
transfer property of two mitochondrial proteins that bridge the inner and outer
membranes, Biophys. J. 92 (2007) 126–137.

[14] R.P. Agarwal, B. Robison, R.E. Parks Jr., Nucleoside diphosphokinase from human
erythrocytes, Methods Enzymol. 51 (1978) 376–386.

[15] L.D. Mayer, M.J. Hope, P.R. Cullis, Vesicles of variable sizes produced by a rapid ex-
trusion procedure, Biochim. Biophys. Acta 858 (1986) 161–168.

[16] R.C. MacDonald, R.I. MacDonald, B.P. Menco, K. Takeshita, N.K. Subbarao, L.R. Hu,
Small-volume extrusion apparatus for preparation of large, unilamellar vesicles,
Biochim. Biophys. Acta 1061 (1991) 297–303.

[17] T. Parasassi, G. De Stasio, G. Ravagnan, R.M. Rusch, E. Gratton, Quantitation of lipid
phases in phospholipid vesicles by the generalized polarization of Laurdan fluo-
rescence, Biophys. J. 60 (1991) 179–189.

[18] O. Maniti, M.F. Lecompte, O. Marcillat, B. Desbat, R. Buchet, C. Vial, T. Granjon, Mito-
chondrial creatine kinase binding to phospholipid monolayers induces cardiolipin
segregation, Biophys. J. 96 (2009) 2428–2438.

[19] J. Saccani, S. Castano, B. Desbat, D. Blaudez, A phospholipid bilayer supported
under a polymerized Langmuir film, Biophys. J. 85 (2003) 3781–3787.

[20] J. Voros, The density and refractive index of adsorbing protein layers, Biophys. J.
87 (2004) 553–561.

[21] P.K. Glasoe, F.A. Long, Use of glass electrodes to measure acidities in deuterium
oxide, J. Physiol. Chem. 64 (1960) 188–190.

[22] A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys. Acta 1767 (2007)
1073–1101.

[23] M. Jackson, H.H. Mantsch, The use and misuse of FTIR spectroscopy in the deter-
mination of protein structure, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 95–120.

[24] W.K. Surewicz, H.H. Mantsch, D. Chapman, Determination of protein secondary
structure by Fourier transform infrared spectroscopy: a critical assessment, Bio-
chemistry 32 (1993) 389–394.

[25] J.L. Arrondo, F.M. Goni, J.M. Macarulla, Infrared spectroscopy of phosphatidylcholines
in aqueous suspension. A study of the phosphate group vibrations, Biochim. Biophys.
Acta 794 (1984) 165–168.

[26] R.N. Lewis, R.N. McElhaney, W. Pohle, H.H. Mantsch, Components of the carbonyl
stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers:
a reevaluation, Biophys. J. 67 (1994) 2367–2375.

[27] T. Granjon, M.J. Vacheron, C. Vial, R. Buchet, Mitochondrial creatine kinase bind-
ing to phospholipids decreases fluidity of membranes and promotes new
lipid-induced beta structures as monitored by red edge excitation shift, laurdan
fluorescence, and FTIR. Biochemistry 40 (2001) 6016–6026.

[28] D. Marsh, Lateral pressure in membranes, Biochim. Biophys. Acta 1286 (1996)
183–223.

[29] J. Hayer, M. Engel, M. Seifert, G. Seitz, C. Welter, Overexpression of nm23-H4 RNA
in colorectal and renal tumours, Anticancer. Res. 21 (2001) 2821–2825.

[30] S. Legardinier, C. Raguenes-Nicol, C. Tascon, C. Rocher, S. Hardy, J.F. Hubert,
E. Le Rumeur, Mapping of the lipid-binding and stability properties of the central
rod domain of human dystrophin, J. Mol. Biol. 389 (2009) 546–558.
[31] R. Sood, Y. Domanov, M. Pietiainen, V.P. Kontinen, P.K. Kinnunen, Binding of LL-37
to model biomembranes: insight into target vs host cell recognition, Biochim.
Biophys. Acta 1778 (2008) 983–996.

[32] R.M. Verly, M.A. Rodrigues, K.R. Daghastanli, A.M. Denadai, I.M. Cuccovia, C. Bloch Jr.,
F. Frezard, M.M. Santoro, D. Pilo-Veloso, M.P. Bemquerer, Effect of cholesterol on the
interaction of the amphibian antimicrobial peptide DD K with liposomes, Peptides
29 (2008) 15–24.

[33] H. Raghuraman, A. Chattopadhyay, Interaction of melittin with membrane
cholesterol: a fluorescence approach, Biophys. J. 87 (2004) 2419–2432.

[34] S.A. Tatulian, R.L. Biltonen, L.K. Tamm, Structural changes in a secretory phospho-
lipase A2 induced by membrane binding: a clue to interfacial activation? J. Mol.
Biol. 268 (1997) 809–815.

[35] J. Cladera, M. Sabes, E. Padros, Fourier transform infrared analysis of bacteriorho-
dopsin secondary structure, Biochemistry 31 (1992) 12363–12368.

[36] T. Granjon, O. Maniti, Y. Auchli, P. Dahinden, R. Buchet, O. Marcillat, P. Dimroth,
Structure–function relations in oxaloacetate decarboxylase complex. Fluores-
cence and infrared approaches to monitor oxomalonate and Na(+) binding ef-
fect, PLoS One 5 (2010) e10935.

[37] N.A. Nevskaya, Y.N. Chirgadze, Infrared spectra and resonance interactions of
amide-I and II vibration of alpha-helix, Biopolymers 15 (1976) 637–648.

[38] E. Dufour, M. Subirade, F. Loupil, A. Riaublanc, Whey proteins modify the phase
transition of milk fat globule phospholipids, Lait 79 (1999) 217–228.

[39] A. Gericke, E.R. Smith, D.J. Moore, R. Mendelsohn, J. Storch, Adipocyte fatty
acid-binding protein: interaction with phospholipid membranes and thermal sta-
bility studied by FTIR spectroscopy, Biochemistry 36 (1997) 8311–8317.

[40] O. Maniti, I. Alves, G. Trugnan, J. Ayala-Sanmartin, Distinct behaviour of the
homeodomain derived cell penetrating peptide penetratin in interaction with dif-
ferent phospholipids, PLoS One 5 (2010) e15819.

[41] Y.P. Zhang, R.N. Lewis, R.S. Hodges, R.N. McElhaney, Interaction of a peptide
model of a hydrophobic transmembrane alpha-helical segment of a membrane
protein with phosphatidylcholine bilayers: differential scanning calorimetric
and FTIR spectroscopic studies, Biochemistry 31 (1992) 11579–11588.

[42] P.L. Chong, P.T. Wong, Interactions of Laurdan with phosphatidylcholine liposomes:
a high pressure FTIR study, Biochim. Biophys. Acta 1149 (1993) 260–266.

[43] E. Kuchinka, J. Seelig, Interaction of melittin with phosphatidylcholine mem-
branes. Binding isotherm and lipid head-group conformation, Biochemistry 28
(1989) 4216–4221.

[44] A.S. Ladokhin, P.W. Holloway, Fluorescence of membrane-bound tryptophan
octyl ester: a model for studying intrinsic fluorescence of protein–membrane in-
teractions, Biophys. J. 69 (1995) 506–517.

[45] S.K. Han, K.P. Kim, R. Koduri, L. Bittova, N.M.Munoz, A.R. Leff, D.C.Wilton, M.H. Gelb,
W. Cho, Roles of Trp31 in high membrane binding and proinflammatory activity of
human group V phospholipase A2, J. Biol. Chem. 274 (1999) 11881–11888.

[46] T.H. Lee, H. Mozsolits, M.I. Aguilar, Measurement of the affinity of melittin for
zwitterionic and anionic membranes using immobilized lipid biosensors, J. Pept.
Res. 58 (2001) 464–476.

[47] U. Schlattner, M. Tokarska-Schlattner, S. Ramirez, A. Bruckner, L. Kay, C. Polge,
R.F. Epand, R.M. Lee, M.L. Lacombe, R.M. Epand, Mitochondrial kinases and
their molecular interaction with cardiolipin, Biochim. Biophys. Acta 1788
(2009) 2032–2047.

[48] Z.T. Schug, E. Gottlieb, Cardiolipin acts as a mitochondrial signalling platform to
launch apoptosis, Biochim. Biophys. Acta 1788 (2009) 2022–2031.

[49] H. Lenz, M. Schmidt, V. Welge, T. Kueper, U. Schlattner, T. Wallimann, H.P.
Elsasser, K.P. Wittern, H. Wenck, F. Staeb, T. Blatt, Inhibition of cytosolic and mi-
tochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell via-
bility and mitochondrial morphology, Mol. Cell. Biochem. 306 (2007) 153–162.

[50] O. Maniti, M. Cheniour, M.F. Lecompte, O. Marcillat, R. Buchet, C. Vial, T. Granjon,
Acyl chain composition determines cardiolipin clustering induced by mitochon-
drial creatine kinase binding to monolayers, Biochim. Biophys. Acta 1808
(2011) 1129–1139.

[51] R.F. Epand, M. Tokarska-Schlattner, U. Schlattner, T. Wallimann, R.M. Epand,
Cardiolipin clusters and membrane domain formation induced by mitochondrial
proteins, J. Mol. Biol. 365 (2007) 968–980.

[52] K. Fritz-Wolf, T. Schnyder, T. Wallimann, W. Kabsch, Structure of mitochondrial
creatine kinase, Nature 381 (1996) 341–345.

[53] F. Forner, L.J. Foster, S. Campanaro, G. Valle, M. Mann, Quantitative proteomic com-
parison of rat mitochondria from muscle, heart, and liver, Mol. Cell. Proteomics 5
(2006) 608–619.


	New insights into lipid-Nucleoside Diphosphate Kinase-D interaction mechanism: Protein structural changes and membrane reor...
	1. Introduction
	2. Materials and methods
	2.1. Materials
	2.2. Bacterial expression and purification of human His-NDPK-D
	2.3. Assay of NDPK activity
	2.4. Preparation of liposomes
	2.5. Interaction of proteins with liposomes
	2.6. Fluorescence measurements
	2.7. Monomolecular film formation at the air buffer interface and surface pressure measurements
	2.8. Brewster angle microscopy
	2.9. Infrared spectra

	3. Results
	3.1. NDPK-D binds to both anionic and zwitterionic membranes
	3.2. Structural changes of NDPK-D after membrane binding
	3.3. NDPK-D modifies membrane fluidity and organisation
	3.3.1. NDPK-D effect on Laurdan fluorescence in liposomes
	3.3.2. Protein effect on lipid infrared absorption bands
	3.3.3. Lipid clustering on monolayers after NDPK-D interaction
	3.3.4. Structural models of NDPK-D binding to CL, deduced from the BAM pictures


	4. Discussion
	5. Effect of membrane binding on protein structure
	6. Modification of lipid organisation by protein binding
	Acknowledgements
	References


