754 research outputs found
Precision Measurement Of The Neutron's Beta Asymmetry Using Ultra-Cold Neutrons
A measurement of A_β, the correlation between the electron momentum and neutron (n) spin (the beta asymmetry) in n beta-decay, together with the n lifetime, provides a method for extracting fundamental parameters for the charged-current weak interaction of the nucleon. In particular when combined with decay measurements, one can extract the V_(ud) element of the CKM matrix, a critical element in CKM unitarity tests. By using a new SD_2 super-thermal source at LANSCE, large fluxes of UCN (ultra-cold neutrons) are expected for the UCNA project. These UCN will be 100% polarized using a 7 T magnetic field, and directed into the β spectrometer. This approach, together with an expected large reduction in backgrounds, will result in an order of magnitude reduction in the critical systematic corrections associated with current n β-asymmetry measurements. This paper will give an overview of the UCNA Aβ measurement as well as an update on the status of the experiment
Microcanonical statistics of black holes and bootstrap condition
The microcanonical statistics of the Schwarzschild black holes as well as the
Reissner-Nordstrm black holes are analyzed. In both cases we set
up the inequalities in the microcanonical density of states.
These are then used to show that the most probable configuration in the gases
of black holes is that one black hole acquires all of the mass and all of the
charge at high energy limit. Thus the black holes obey the statistical
bootstrap condition and, in contrast to the other investigation, we see that
U(1) charge does not break the bootstrap property.Comment: 16 pages. late
Building blocks of a black hole
What is the nature of the energy spectrum of a black hole ? The algebraic
approach to black hole quantization requires the horizon area eigenvalues to be
equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be
exponentially degenerate with respect to the area quantum number if one is to
understand black hole entropy as reflecting degeneracy of the observable
states. Here we construct the black hole states by means of a pair of "creation
operators" subject to a particular simple algebra, a slight generalization of
that for the harmonic oscillator. We then prove rigorously that the n-th area
eigenvalue is exactly 2 raised to the n-fold degenerate. Thus black hole
entropy qua logarithm of the number of states for fixed horizon area comes out
proportional to that area.Comment: PhysRevTeX, 14 page
Search for the Neutron Decay n X+ where X is a dark matter particle
In a recent paper submitted to Physical Review Letters, Fornal and Grinstein
have suggested that the discrepancy between two different methods of neutron
lifetime measurements, the beam and bottle methods can be explained by a
previously unobserved dark matter decay mode, n X+ where X
is a dark matter particle. We have performed a search for this decay mode over
the allowed range of energies of the monoenergetic gamma ray for X to be a dark
matter particle. We exclude the possibility of a sufficiently strong branch to
explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure
Area Spectrum of Kerr and extremal Kerr Black Holes from Quasinormal Modes
Motivated by the recent interest in quantization of black hole area spectrum,
we consider the area spectrum of Kerr and extremal Kerr black holes. Based on
the proposal by Bekenstein and others that the black hole area spectrum is
discrete and equally spaced, we implement Kunstatter's method to derive the
area spectrum for the Kerr and extremal Kerr black holes. The real part of the
quasinormal frequencies of Kerr black hole used for this computation is of the
form where is the angular velocity of the black hole
horizon. The resulting spectrum is discrete but not as expected uniformly
spaced. Thus, we infer that the function describing the real part of
quasinormal frequencies of Kerr black hole is not the correct one. This
conclusion is in agreement with the numerical results for the highly damped
quasinormal modes of Kerr black hole recently presented by Berti, Cardoso and
Yoshida. On the contrary, extremal Kerr black hole is shown to have a discrete
area spectrum which in addition is evenly spaced. The area spacing derived in
our analysis for the extremal Kerr black hole area spectrum is not proportional
to . Therefore, it does not give support to Hod's statement that the
area spectrum should be valid for a generic
Kerr-Newman black hole.Comment: 10 pages, no figure, LaTeX; v2: 12 pages, clarifying comments and an
Appendix are added, version to appear in Mod. Phys. Lett.
The spectrum of quantum black holes and quasinormal modes
The spectrum of multiple level transitions of the quantum black hole is
considered, and the line widths calculated. Initial evidence is found for these
higher order transitions in the spectrum of quasinormal modes for Schwarzschild
and Kerr black holes, further bolstering the idea that there exists a
correspondence principle between quantum transitions and classical ``ringing
modes''. Several puzzles are noted, including a fine-tuning problem between the
line width and the level degeneracy. A more general explanation is provided for
why setting the Immirzi parameter of loop quantum gravity from the black hole
spectrum necessarily gives the correct value for the black hole entropy.Comment: 5 pages, 5 figures, version to appear in Phys. Rev.
First Measurement of the Neutron -Asymmetry with Ultracold Neutrons
We report the first measurement of angular correlation parameters in neutron
-decay using polarized ultracold neutrons (UCN). We utilize UCN with
energies below about 200 neV, which we guide and store for s in a Cu
decay volume. The potential of a static 7 T field
external to the decay volume provides a 420 neV potential energy barrier to the
spin state parallel to the field, polarizing the UCN before they pass through
an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated
within a 1 T, superconducting solenoidal spectrometer. We
determine a value for the -asymmetry parameter , proportional to
the angular correlation between the neutron polarization and the electron
momentum, of .Comment: 4 pages, 2 figures, 1 table, submitted to Phys. Rev. Let
Can screening and brief intervention lead to population-level reductions in alcohol-related harm?
A distinction is made between the clinical and public health justifications for screening and brief intervention (SBI) against hazardous and harmful alcohol consumption. Early claims for a public health benefit of SBI derived from research on general medical practitioners' (GPs') advice on smoking cessation, but these claims have not been realized, mainly because GPs have not incorporated SBI into their routine practice. A recent modeling exercise estimated that, if all GPs in England screened every patient at their next consultation, 96% of the general population would be screened over 10 years, with 70-79% of excessive drinkers receiving brief interventions (BI); assuming a 10% success rate, this would probably amount to a population-level effect of SBI. Thus, a public health benefit for SBI presupposes widespread screening; but recent government policy in England favors targeted versus universal screening, and in Scotland screening is based on new registrations and clinical presentation. A recent proposal for a national screening program was rejected by the UK National Health Service's National Screening Committee because 1) there was no good evidence that SBI led to reductions in mortality or morbidity, and 2) a safe, simple, precise, and validated screening test was not available. Even in countries like Sweden and Finland, where expensive national programs to disseminate SBI have been implemented, only a minority of the population has been asked about drinking during health-care visits, and a minority of excessive drinkers has been advised to cut down. Although there has been research on the relationship between treatment for alcohol problems and population-level effects, there has been no such research for SBI, nor have there been experimental investigations of its relationship with population-level measures of alcohol-related harm. These are strongly recommended. In this article, conditions that would allow a population-level effect of SBI to occur are reviewed, including their political acceptability. It is tentatively concluded that widespread dissemination of SBI, without the implementation of alcohol control measures, might have indirect influences on levels of consumption and harm but would be unlikely on its own to result in public health benefits. However, if and when alcohol control measures were introduced, SBI would still have an important role in the battle against alcohol-related harm
Final results for the neutron β-asymmetry parameter A₀ from the UCNA experiment
The UCNA experiment was designed to measure the neutron β-asymmetry parameter A0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A₀
- …
