90 research outputs found

    Observations on Hilltopping in Thick-Headed Flies (Diptera: Conopidae)

    Get PDF
    Direct observations of hilltopping behaviour in the thick-headed flies (Diptera: Conopidae) have only been mentioned once in the literature. Hilltop collecting, however, may be an effective way to survey these endparasitoids. The first evidence of hilltopping in species belonging to the subfamilies Myopinae and Dalmanniinae is presented and discussed. Field observations were conducted on Colle Vescovo, Italy and Mount Rigaud, Canada, and museum specimens were examined. Observations and records indicate that four species in the genera Dalmannia, Myopa, and Zodion are hilltoppers on Colle Vescovo, while three species in the genera Myopa and Physocephala are hilltoppers on three hilltops near Ottawa, Canada. Fifteen additional species of conopids have been collected on hilltops and could possibly utilize hilltops in some years as a part of their mating strategy. Detailed phenologies and observations of mating and perching behaviours are given for species in the genera Dalmannia, Myopa, Physocephala, and Zodion. The importance of hilltop habitat preservation is stressed

    Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    Get PDF
    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones

    Revisionary notes on Siniconops

    No full text

    The transcriptional regulators SteA and StuA contribute to keratin degradation and sexual reproduction of the dermatophyte Arthroderma benhamiae.

    No full text
    Most superficial fungal infections are caused by dermatophytes, a specialized group of filamentous fungi which exclusively infect keratinized host structures such as hair, skin and nails. Since little is known about the molecular basis of pathogenicity and sexual reproduction in dermatophytes, here we functionally addressed two central transcriptional regulators, SteA and StuA. In the zoophilic species Arthroderma benhamiae a strategy for targeted genetic manipulation was recently established, and moreover, the species is teleomorphic and thus allows performing assays based on mating. By comparative genome analysis homologs of the developmental regulators SteA and StuA were identified in A. benhamiae. Knock-out mutants of the corresponding genes as well as complemented strains were generated and phenotypically characterized. In contrast to A. benhamiae wild type and complemented strains, both mutants failed to produce sexual reproductive structures in mating experiments. Analysis of growth on keratin substrates indicated that loss of steA resulted in the inability of ΔsteA mutants to produce hair perforation organs, but did not affect mycelia formation during growth on hair and nails. By contrast, ΔstuA mutants displayed a severe growth defect on these substrates, but were still able to produce hair perforations. Hence, formation of hair perforation organs and fungal growth on hair per se are differentially regulated processes. Our findings on the major role of SteA and StuA during sexual development and keratin degradation in A. benhamiae provide insights into their role in dermatophytes and further enhance our knowledge of basic biology and pathogenicity of these fungi
    corecore