47 research outputs found

    Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability

    Get PDF
    Aurora kinases are key regulators of chromosome segregation during mitosis. We have previously shown by microarray analysis of primary lung carcinomas and matched normal tissue that AURKB (22 out of 37) and AURKA (15 out of 37) transcripts are frequently over-represented in these tumours. We now confirm these observations in a second series of 44 carcinomas and also show that aurora B kinase protein levels are raised in the tumours compared to normal tissue. Elevated levels of expression in tumours are not a consequence of high-level amplification of the AURKB gene. Using a coding sequence polymorphism we show that in most cases (seven out of nine) tumour expression is predominantly driven from one AURKB allele. Given the function of aurora B kinase, we examined whether there was an association between expression levels and genetic instability. We defined two groups of high and low AURKB expression. Using a panel of 10 microsatellite markers, we found that the group showing the higher level of expression had a higher frequency of allelic imbalance (P=0.0012). Analysis of a number of other genes that are strongly and specifically expressed in tumour over normal lung, including SERPINB5, TERT and PRAME, showed marked allelic expression imbalances in the tumour tissue in the context of balanced or only marginally imbalanced relative allelic copy numbers. Our data support a model of early carcinogenesis wherein defects in the process of inactivation of lung stem-cell associated genes during differentiation, contributes to the development of carcinogenesis

    Genetic compendium of 1511 human brains available through the UK Medical Research Council Brain Banks Network Resource.

    Get PDF
    Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies.This work was funded by the UK Medical Research Council (13044). M.J.K. is a Wellcome Trust Clinical Research Training Fellow. P.F.C. is a Wellcome Trust Senior Fellow in Clinical Science (101876/Z/13/Z) and a UK NIHR Senior Investigator, who receives support from the Medical Research Council Mitochondrial Biology Unit (MC_UP_1501/2), the Wellcome Trust Centre for Mitochondrial Research (096919Z/11/Z), the Medical Research Council (UK) Centre for Translational Muscle Disease (G0601943), EU FP7 TIRCON, and the National Institute for Health Research (NIHR) Biomedical Research Centre based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge

    Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression

    Get PDF
    Author Summary Genetic variants on chromosome 9p21 have been associated with several important diseases including coronary artery disease, diabetes, and multiple cancers. Most of the risk variants in this region do not alter any protein sequence and are therefore likely to act by influencing the expression of nearby genes. We investigated whether chromosome 9p21 variants are correlated with expression of the three nearest genes ( CDKN2A , CDKN2B , and ANRIL ) which might mediate the association with disease. Using two different techniques to study effects on expression in blood from two separate populations of healthy volunteers, we show that variants associated with disease are all correlated with ANRIL expression, but associations with the other two genes are weaker and less consistent. Multiple genetic variants are independently associated with expression of all three genes. Although total expression levels of CDKN2A , CDKN2B , and ANRIL are positively correlated, individual genetic variants influence ANRIL and CDKN2B expression in opposite directions, suggesting a possible role of ANRIL in CDKN2B regulation. Our study suggests that modulation of ANRIL expression mediates susceptibility to several important human diseases

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Eine Alterungserscheinung an Gelatineschichten und ihre Bekämpfung

    No full text
    corecore