278 research outputs found

    An unusual case of low-grade tubulopapillary adenocarcinoma of the sinonasal tract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-grade papillary adenocarcinomas of the sinonasal tract are rare neoplasms. Over recent years, little doubt remains that this tumour represents a separate entity based on morphology, ultrastructural features and behaviour. We outline a case of this rare entity displaying a not hitherto described immunophenotype.</p> <p>Case presentation</p> <p>A 32 year old man presented recurrent epistaxis was evaluated with endoscopy which revealed a well circumscribed pedunculated mass lesion in left nares. The mass was arising from the nasal septum which was excised along with the mass. The biopsy revealed low-grade, non-intestinal type sinonasal tubulopapillary adenocarcinoma.</p> <p>Conclusion</p> <p>TTF-1 immunoreactivity in absence of thyroid or pulmonary primary in the present case remains an enigma. However, this raises the possibility of the utility of this antibody to predict a better clinical outcome in the subset of low grade non-intestinal sinonasal adenocarcinoma. More cases of similar morphological appearance may need to be examined for TTF-1 immunoreactivity and clinically followed up to establish this theory.</p

    Universal distribution of transparencies in highly conductive Nb/AlOx_x/Nb junctions

    Full text link
    We report the observation of the universal distribution of transparencies, predicted by Schep and Bauer [Phys. Rev. Lett. {\bf 78}, 3015 (1997)] for dirty sharp interfaces, in uniform Nb/AlOx_x/Nb junctions with high specific conductance (10810^8 Ohm−1^{-1}cm−2^{-2}). Experiments used the BCS density of states in superconducting niobium for transparency distribution probing. Experimental results for both the dc I−VI-V curves at magnetic-field-suppressed supercurrent and the Josephson critical current in zero magnetic field coincide remarkably well with calculations based on the multimode theory of multiple Andreev reflections and the Schep-Bauer distribution.Comment: 4 pages, 4 figures, references adde

    Theory of AC Josepson Effect in Superconducting Constrictions

    Full text link
    We have developed a microscopic theory of ac Josephson effect in short ballistic superconducting constrictions with arbitrary electron transparency and in constrictions with diffusive electron transport. The theory is valid for arbitrary miscroscopic structure of the superconducting electrodes of the constriction. As applications of the theory we study smearing of the subgap current singularities by pair-breaking effects and also the structure of these singularities in the constrictions between the composite S/N electrodes with the proximity-induced gap in the normal layer.Comment: 11 pages, RevTex, 3 figures available on reques

    Bisphenol A-glycidyl methacrylate induces a broad spectrum of DNA damage in human lymphocytes

    Get PDF
    Bisphenol A-glycidyl methacrylate (BisGMA) is monomer of dental filling composites, which can be released from these materials and cause adverse biologic effects in human cells. In the present work, we investigated genotoxic effect of BisGMA on human lymphocytes and human acute lymphoblastic leukemia cell line (CCRF-CEM) cells. Our results indicate that BisGMA is genotoxic for human lymphocytes. The compound induced DNA damage evaluated by the alkaline, neutral, and pH 12.1 version of the comet assay. This damage included oxidative modifications of the DNA bases, as checked by DNA repair enzymes EndoIII and Fpg, alkali-labile sites and DNA double-strand breaks. BisGMA induced DNA-strand breaks in the isolated plasmid. Lymphocytes incubated with BisGMA at 1 mM were able to remove about 50% of DNA damage during 120-min repair incubation. The monomer at 1 mM evoked a delay of the cell cycle in the S phase in CCRF-CEM cells. The experiment with spin trap—DMPO demonstrated that BisGMA induced reactive oxygen species, which were able to damage DNA. BisGMA is able to induce a broad spectrum of DNA damage including severe DNA double-strand breaks, which can be responsible for a delay of the cell cycle in the S phase

    Gene expression profiling in sinonasal adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers.</p> <p>Methods</p> <p>To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors.</p> <p>Results</p> <p>Among the genes with significant differential expression we selected <it>LGALS4, ACS5, CLU, SRI and CCT5 </it>for further exploration. The overexpression of <it>LGALS4, ACS5, SRI</it>, <it>CCT5 </it>and the downregulation of <it>CLU </it>were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4), ACS5 (Acyl-CoA synthetase) and CLU (Clusterin) proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type.</p> <p>Conclusion</p> <p>Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers.</p
    • 

    corecore