25 research outputs found

    Conformal symmetry and light flavor baryon spectra

    Full text link
    The degeneracy among parity pairs systematically observed in the N and Delta spectra is interpreted to hint on a possible conformal symmetry realization in the light flavor baryon sector in line with AdS_5/CFT_4. The case is made by showing that all the observed N and Delta resonances with masses below 2500 MeV distribute fairly well each over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on the AdS_5 cone, conformally compactified to R^1*S^3. The free geodesic motion on the S^3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon type. The equation is then gauged by the "curved" Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, while the remaining states belonging to same level remain practically degenerate. The model describes the correct mass ordering in the P11-S11 pairs through the nucleon spectrum as a combined effect of the above conformal symmetry breaking, on the one side, and a parity change of the diquark from a scalar at low masses, to a pseudoscalar at higher masses, on the other. The quality of the wave functions is illustrated by calculations of realistic mean-square charge radii and electric charge form-factors on the examples of the proton, and the protonic P11(1440), and S11(1535) resonances. The scheme also allows for a prediction of the dressing function of an effective instantaneous gluon propagator from the Fourier transform of the gauge potential. We find a dressing function that is finite in the infrared and tends to zero at infinity.Comment: Latex, 5 figures, 2 tables; Paper upgraded in accord with the published version. Discussion on the meson sector include

    Higher Resonance Contributions to the Adler-Weisberger Sum Rule in the Large N_c Limit

    Full text link
    We determine the NcN_c--dependence of the resonance contributions to the Adler--Weisberger sum rule for the inverse square 1/gA21/g_A^2 of the axial charge coupling constant and show that in the large NcN_c limit the contributions of the Roper-like excitations scale as O(1/Nc)O(1/N_c). Consistency with the 1/Nc21/N_c^2 scaling of the 1/gA21/g_A^2 term in the sum rule requires these contributions to cancel against each other.Comment: 10 pages, LaTeX, TH Darmstadt preprint IKDA 93/47, REVISE

    Nucleon form factors in the canonically quantized Skyrme model

    Full text link
    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, fπf_\pi and ee, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.Comment: 14pp including figure

    Electromagnetic multipole moments of elementary spin-1/2, 1, and 3/2 particles

    Full text link
    We study multipole decompositions of the electromagnetic currents of spin-1/2, 1, and 3/2 particles described in terms of Lagrangians designed to reproduce representation specific wave equations which are second order in the momenta and which emerge within the recently elaborated Poincar\'e covariant projector method. We calculate the electric multipoles of the above spins for the spinor, the four-vector, and the four-vector--spinor representations, attend to the most general non-Lagrangian spin-3/2 currents which are allowed by Lorentz invariance to be of third order in the momenta and construct the linear current equivalent of identical multipole moments of one of them. We conclude that such non-Lagrangian currents are not necessarily more general than the two-term currents emerging within the covariant projector method. We compare our results with those of the conventional Proca-, and Rarita-Schwinger frameworks. Finally, we test the representation dependence of the multipoles by placing spin-1 and spin-3/2 in the respective (1,0)\oplus(0,1), and (3/2,0)\oplus(0,3/2) single-spin representations. We observe representation independence of the charge monopoles and the magnetic dipoles, in contrast to the higher multipoles, which turn out to be representation dependent. In particular, we find the bi-vector (1,0)(0,1)(1,0)\oplus (0,1) to be characterized by an electric quadrupole moment of opposite sign to the one found in (1/2,1/2)(1/2,1/2), and consequently, to the WW boson. Our finding points toward the possibility that the ρ\rho meson could transform as part of an antisymmetric tensor with an a1a_{1} meson-like state as its representation companion.Comment: 27 pages, 2 figure

    Two-body Pion Absorption on 3He^3He at Threshold

    Full text link
    It is shown that a satisfactory explanation of the ratio of the rates of the reactions 3He(π,nn)^3He(\pi^-,nn) and 3He(π,np)^3He(\pi^-,np) for stopped pions is obtained once the effect of the short range two-nucleon components of the axial charge operator for the nuclear system is taken into account. By employing realistic models for the nucleon-nucleon interaction in the construction of these components of the axial charge operator, the predicted ratios agree with the empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-

    The effects of meson mixing on dilepton spectra

    Get PDF
    The effect of scalar and vector meson mixing on the dilepton radiation from hot and dense hadronic matter is estimated in different isospin channels. In particular, we study the effect of σ\sigma-ω\omega and ρa0\rho-a_0 mixing and calculate the corresponding rates. Effects are found to be significant compared to standard π\pi-π\pi and KK-Kˉ{\bar K} annihilations. While the mixing in the isoscalar channel mostly gives a contribution in the invariant mass range between the two-pion threshold and the ω\omega peak, the isovector channel mixing induces an additional peak just below that of the ϕ\phi. Experimentally, the dilepton signals from ρ\rho-a0a_0 mixing seem to be more tractable than those from σ\sigma-ω\omega mixing.Comment: 10 pages, 9 figure

    The Axial-Vector Current in Nuclear Many-Body Physics

    Full text link
    Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body problem. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ\sigma) and vector (ω\omega) fields, and isovector vector (ρ\rho) fields. The theory exhibits a nonlinear realization of SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to systematically expand the effective lagrangian in powers of the meson fields (and their derivatives) and to reliably truncate the expansion after the first few orders. Here it is shown that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion, satisfy both PCAC and the Goldberger--Treiman relation, and it is verified that the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty, revtex4.cls, plus 14 figures; two sentences added in Summary; two references adde

    Near-threshold production of a0(980)a_0(980)-mesons in πN\pi N and NN collisions and a0/f0a_0/f_0-mixing

    Get PDF
    We consider near-threshold a0(980)a_0(980)-meson production in πN\pi N and NNNN collisions. An effective Lagrangian approach with one-pion exchange is applied to analyze different contributions to the cross section for different isospin channels. The Reggeon exchange mechanism is also evaluated for comparison. The results from πN\pi N reactions are used to calculate the contribution of the a0a_0 meson to the cross sections and invariant KKˉK \bar K mass distributions of the reactions pppnK+Kˉ0pp\to pn K^+\bar K^0 and ppppK+Kpp\to pp K^+K^-. It is found that the experimental observation of a0+a_0^+ mesons in the reaction pppnK+Kˉ0pp\to pn K^+\bar K^0 is much more promising than the observation of a00a_0^0 mesons in the reaction ppppK+Kpp\to pp K^+K^-. Effects of isospin violation in the reactions pNda0pN \to d a_0, pd3He/3Ha0pd \to \mathrm{^3He/^3H} a_0, and dd4Hea0 dd \to \mathrm{^4He} a_0, which are induced by a0(980)a_0(980)--f0(980)f_0(980) mixing, are also analyzed.Comment: 43 pages, including 16 eps figures, to be bublished in Phys. Atom. Nucl. (Yad. Fiz.) vol. 65, No. 11 (2002

    Exploration of hyperfine interaction between constituent quarks via eta productions

    Full text link
    In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, πpηn\pi^{-}p\rightarrow\eta n and γpηp\gamma p\rightarrow\eta p. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.Comment: 7 pages, 4 figures, 4 table
    corecore