374 research outputs found

    Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet

    Full text link
    We have measured the heat capacity and magnetization of the spin one one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic field versus temperature phase diagram. We found a field induced long-range magnetic ordering. We have been successful in explaining the phase diagram theoretically.Comment: 6 pages, 18 figure

    Magnetic phase diagram of the diluted metamagnet Fe\u3csub\u3e0.95\u3c/sub\u3eMg\u3csub\u3e0.05\u3c/sub\u3eBr\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The axial magnetic phase diagram of the antiferromagnet Fe0.95Mg0.05Br2 is studied by specific heat, superconducting quantum interference device, and Faraday rotation techniques. The diamagnetic impurities give rise to random-field criticality along the second-order phase line Hc(T) between TN=13.1 K and a multicritical point at Tm≈5 K, and to a spin-flop line between Tm and the critical end-point temperature Te≈3.5 K. The phase line H1(T)c(T) ending at Tm is probably due to symmetric nondiagonal exchange

    Massive triplet excitations in a magnetized anisotropic Haldane spin chain

    Full text link
    Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet \nd are performed at mK temperatures in magnetic fields of almost twice the critical field HcH_c applied perpendicular to the spin cahins. Above HcH_c a re-opening of the spin gap is clearly observed. In the high-field N\'eel-ordered state the spectrum is dominated by three distinct long-lived excitation branches. Several field-theoretical models are tested in a quantitative comparison with the experimental data.Comment: 4 pages, 3 figure

    Haldane-gap excitations in the low-H_c 1-dimensional quantum antiferromagnet NDMAP

    Full text link
    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet NDMAP, that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δx=0.42\Delta_x=0.42 meV, Δy=0.52\Delta_y=0.52 meV and Δz=1.86\Delta_z=1.86 meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are directly measured. The dispersion perpendicular to the chain axis c is studied, and extremely weak inter-chain coupling constants Jy=1.8⋅10−3J_y=1.8\cdot 10^{-3} meV and Jx=3.5⋅10−4J_x=3.5\cdot 10^{-4} meV, along the a and b axes, respectively, are determined. The results are discussed in the context of future experiments in high magnetic fields.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Quasi-elastic neutron scattering in the high-field phase of a Haldane antiferromagnet

    Full text link
    Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet NDMAP are performed in magnetic fields below and above the critical field Hc at which the gap closes. Quasi-elastic neutron scattering is found for H>Hc indicating topological excitations in the high field phase.Comment: Added to discussion section. v2: Updated figure

    Direct Observation of the Quantum Energy Gap in S = 1/2 Tetragonal Cuprate Antiferromagnets

    Get PDF
    Using an electron spin resonance spectrometer covering a wide range of frequency and magnetic field, we have measured the low energy excitations of the S=1/2 tetragonal antiferromagnets, Sr_{2}CuO_{2}Cl_{2} and Sr_{2}Cu_{3}O_{4}Cl_{2}. Our observation of in-plane energy gaps of order 0.1 meV at zero external magnetic field are consistent with a spin wave calculation, which includes several kinds of quantum fluctuations that remove frustration. Results agree with other experiments and with exchange anisotropy parameters determined from a five band Hubbard model.Comment: 4 pages, 3 figure

    Dynamics of an anisotropic Haldane antiferromagnet in strong magnetic field

    Full text link
    We report the results of elastic and inelastic neutron scattering experiments on the Haldane gap quantum antiferromagnet Ni(C5D14N2)2N3(PF6) performed at mK temperatures in a wide range of magnetic field applied parallel to the S = 1 spin chains. Even though this geometry is closest to an ideal axially symmetric configuration, the Haldane gap closes at the critical field Hc~4T, but reopens again at higher fields. The field dependence of the two lowest magnon modes is experimentally studied and the results are compared with the predictions of several theoretical models. We conclude that of several existing theories, only the recently proposed model [Zheludev et al., cond-mat/0301424 ] is able to reproduce all the features observed experimentally for different field orientations.Comment: 11 pages 8 figures submitted to Phys. Rev.

    Experimental Evidence of a Haldane Gap in an S = 2 Quasi-linear Chain Antiferromagnet

    Full text link
    The magnetic susceptibility of the S=2S = 2 quasi-linear chain Heisenberg antiferromagnet (2,2′2'-bipyridine)trichloromanganese(III), MnCl_{3}(bipy), has been measured from 1.8 to 300 K with the magnetic field, H, parallel and perpendicular to the chains. The analyzed data yield g≈2g\approx 2 and J≈35J\approx 35 K. The magnetization, M, has been studied at 30 mK and 1.4 K in H up to 16 T. No evidence of long-range order is observed. Depending on crystal orientation, M≈0M\approx 0 at 30 mK until a critical field is achieved (Hc∥=1.2±0.2TH_{c\|} = 1.2\pm 0.2 T and $H_{c\bot} = 1.8\pm 0.2 T), where M increases continuously as H is increased. These results are interpreted as evidence of a Haldane gap.Comment: 11 pages, 4 figure

    Neutron scattering study of transverse magnetism

    Get PDF
    In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed

    Field-induced 3- and 2-dimensional freezing in a quantum spin liquid

    Full text link
    Field-induced commensurate transverse magnetic ordering is observed in the Haldane-gap compound \nd by means of neutron diffraction. Depending on the direction of applied field, the high-field phase is shown to be either a 3-dimensional ordered N\'{e}el state or a short-range ordered state with dominant 2-dimensional spin correlations. The structure of the high-field phase is determined, and properties of the observed quantum phase transition are discussed.Comment: 4 pages 3 figure
    • …
    corecore