28 research outputs found

    Current trend in synthesis, Post-Synthetic modifications and biological applications of Nanometal-Organic frameworks (NMOFs)

    Get PDF
    Since the early reports of MOFs and their interesting properties, research involving these materials has grown wide in scope and applications. Various synthetic approaches have ensued in view of obtaining materials with optimised properties, the extensive scope of application spanning from energy, gas sorption, catalysis biological applications has meant exponentially evolved over the years. The far‐reaching synthetic and PSM approaches and porosity control possibilities have continued to serve as a motivation for research on these materials. With respect to the biological applications, MOFs have shown promise as good candidates in applications involving drug delivery, BioMOFs, sensing, imaging amongst others. Despite being a while away from successful entry into the market, observed results in sensing, drug delivery, and imaging put these materials on the spot light as candidates poised to usher in a revolution in biology. In this regard, this review article focuses current approaches in synthesis, post functionalization and biological applications of these materials with particular attention on drug delivery, imaging, sensing and BioMOFs

    Solid-state phase transformations toward a metal-organic framework of 7-connected Zn4O secondary building units

    No full text
    In the development of metal-organic frameworks (MOFs), secondary building units (SBUs) have been utilized as molecular modules for the construction of nanoporous materials with robust structures. Under solvothermal synthetic conditions, dynamic changes in the metal coordination environments and ligand coordination modes of SBUs determine the resultant product structures. Alternatively, MOF phases with new topologies can also be achieved by post-synthetic treatment of as-synthesized MOFs via the introduction of acidic or basic moieties that cause the simultaneous cleavage/reformation of coordination bonds in the solid state. In this sense, we studied the solid-state transformation of two ndc-based Zn-MOFs (ndc = 1,4-naphthalene dicarboxylate) with different SBUs but the same pcu topology to another MOF with sev topology. One of the chosen MOFs with pcu nets is [Zn-2(ndc)(2)(bpy)](n)(bpy = 4,4 '-bipyridine), (6C(bpy)-MOF) consisting of a 6-connected pillared-paddlewheel SBU, and the other is IRMOF-7 composed of 6-connected Zn4O(COO)(6)SBUs and ndc. Upon post-structural modification, these pcu MOFs were converted into the same MOF with sev topology constructed from the uncommon 7-connected Zn4O(COO)(7)SBU (7C-MOF). The appropriate post-synthetic conditions for the transformation of each SBUs were systematically examined. In addition, the effect of the pillar molecules in the pillared-paddlewheel MOFs on the topology conversion was studied in terms of the linker basicity, which determines the inertness during the solid-state phase transformation. This post-synthetic modification approach is expected to expand the available methods for designing and synthesizing MOFs with controlled topologies

    Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework

    No full text
    [Image: see text] A molecular proton reduction catalyst [FeFe](dcbdt)(CO)(6) (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal–organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The molecular integrity of the organometallic site within the MOF is demonstrated by a variety of techniques, including X-ray absorption spectroscopy. In conjunction with [Ru(bpy)(3)](2+) as a photosensitizer and ascorbate as an electron donor, MOF-[FeFe](dcbdt)(CO)(6) catalyzes photochemical hydrogen evolution in water at pH 5. The immobilized catalyst shows substantially improved initial rates and overall hydrogen production when compared to a reference system of complex 1 in solution. Improved catalytic performance is ascribed to structural stabilization of the complex when incorporated in the MOF as well as the protection of reduced catalysts 1(–) and 1(2–) from undesirable charge recombination with oxidized ascorbate
    corecore