292 research outputs found

    IPP-rich milk protein hydrolysate lowers blood pressure in subjects with stage 1 hypertension, a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Milk derived peptides have been identified as potential antihypertensive agents. The primary objective was to investigate the effectiveness of IPP-rich milk protein hydrolysates (MPH) on reducing blood pressure (BP) as well as to investigate safety parameters and tolerability. The secondary objective was to confirm or falsify ACE inhibition as the mechanism underlying BP reductions by measuring plasma renin activity and angiotensin I and II.</p> <p>Methods</p> <p>We conducted a randomized, placebo-controlled, double blind, crossover study including 70 Caucasian subjects with prehypertension or stage 1 hypertension. Study treatments consisted of daily consumption of two capsules MPH1 (each containing 7.5 mg Isoleucine-Proline-Proline; IPP), MPH2 (each containing 6.6 mg Methionine-Alanine-Proline, 2.3 mg Leucine-Proline-Proline, 1.8 mg IPP), or placebo (containing cellulose) for 4 weeks.</p> <p>Results</p> <p>In subjects with stage 1 hypertension, MPH1 lowered systolic BP by 3.8 mm Hg (P = 0.0080) and diastolic BP by 2.3 mm Hg (P = 0.0065) compared with placebo. In prehypertensive subjects, the differences in BP between MPH1 and placebo were not significant. MPH2 did not change BP significantly compared with placebo in stage I hypertensive or prehypertensive subjects. Intake of MPHs was well tolerated and safe. No treatment differences in hematology, clinical laboratory parameters or adverse effects were observed. No significant differences between MPHs and placebo were found in plasma renin activity, or angiotensin I and II.</p> <p>Conclusions</p> <p>MPH1, containing IPP and no minerals, exerts clinically relevant BP lowering effects in subjects with stage 1 hypertension. It may be included in lifestyle changes aiming to prevent or reduce high BP.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00471263</p

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O \to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Anomalous spin susceptibility and magnetic polaron formation in the double exchange systems

    Full text link
    The magnetic susceptibility and spin-spin correlation of the double-exchange model for doped manganites are investigated through the Monte Carlo calculations on the three-dimensional lattice model. Deviations of the susceptibility from the Curie-Weiss behavior above the ferromagnetic ordering temperature TcT_c seem to indicate a formation of local ferromagnetic clusters in the vicinity of TcT_c, which is consistent with recent electron paramagnetic resonance experiments for La2/3_{2/3}Ca1/3_{1/3}MnO3_3. A further analysis of the spin-spin correlations show the ferromagnetic cluster size to be three-to-four lattice spacings, suggesting that the charge carriers may form magnetic polarons.Comment: 5 pages, 5 figures, Late

    Phase Transition in Perovskite Manganites with Orbital Degree of Freedom

    Full text link
    Roles of orbital degree of freedom of Mn ions in phase transition as a function of temperature and hole concentration in perovskite manganites are studied. It is shown that the orbital order-disorder transition is of the first order in the wide region of hole concentration and the Neˊ\rm \acute{e}el temperature for the anisotropic spin ordering, such as the layer-type antiferromagnetic one, is lower than the orbital ordering temperature due to the anisotropy in the orbital space. The calculated results of the temperature dependence of the spin and orbital order parameters explain a variety of the experiments observed in manganites.Comment: 10 pages, 5 figure

    Management of Diabetes Mellitus: Could Simultaneous Targeting of Hyperglycemia and Oxidative Stress Be a Better Panacea?

    Get PDF
    The primary aim of the current management of diabetes mellitus is to achieve and/or maintain a glycated hemoglobin level of ≤6.5%. However, recent evidence indicates that intensive treatment of hyperglycemia is characterized by increased weight gain, severe hypoglycemia and higher mortality. Besides, evidence suggests that it is difficult to achieve and/or maintain optimal glycemic control in many diabetic patients; and that the benefits of intensively-treated hyperglycemia are restricted to microvascular complications only. In view of these adverse effects and limitations of intensive treatment of hyperglycemia in preventing diabetic complications, which is linked to oxidative stress, this commentary proposes a hypothesis that “simultaneous targeting of hyperglycemia and oxidative stress” could be more effective than “intensive treatment of hyperglycemia” in the management of diabetes mellitus

    Mid-Infrared Conductivity from Mid-Gap States Associated with Charge Stripes

    Full text link
    The optical conductivity of La(2-x)Sr(x)NiO(4) has been interpreted in various ways, but so far the proposed interpretations have neglected the fact that the holes doped into the NiO(2) planes order in diagonal stripes, as established by neutron and X-ray scattering. Here we present a study of optical conductivity in La(2)NiO(4+d) with d=2/15, a material in which the charge stripes order three-dimensionally. We show that the conductivity can be decomposed into two components, a mid-infrared peak that we attribute to transitions from the filled valence band into empty mid-gap states associated with the stripes, and a Drude peak that appears at higher temperatures as carriers are thermally excited into the mid-gap states. The shift of the mid-IR peak to lower energy with increasing temperature is explained in terms of the Franck-Condon effect. The relevance of these results to understanding the optical conductivity in the cuprates is discussed.Comment: final version of paper (minor changes from previous version
    corecore