26 research outputs found

    Performance and durability of broadband antireflection coatings for thin film CdTe solar cells

    Get PDF
    Light reflection from the glass surface of a photovoltaic (PV) module is a significant source of energy loss for all types of PV devices. The reflection at the glass and air interface accounts for 4% of the total energy. Single layer antireflection coatings with sufficiently low refractive index have been used, such as those using magnesium fluoride or porous silica, but these are only effective over a narrow range of wavelengths. In this paper, the authors report on the design, deposition, and testing of multilayer broadband antireflection coatings. These coatings reduce the weighted average reflection over the wavelength range used by thin film CdTe devices to just 1.22%, resulting in a 3.6% relative increase in device efficiency. The authors have used multilayer stacks consisting of silica and zirconia layers deposited using reactive magnetron sputtering. Details of the stack design, sputter deposition process parameters, and the optical and microstructural properties of the layers are provided. Antireflection coatings on glass exposed to the outdoors must not degrade over the lifetime of the module. A comprehensive set of accelerated environmental durability tests has been carried out in accordance with IEC 61646 PV qualification tests. The durability tests confirmed no damage to the coatings or performance drop as a result of thermal cycling or damp heat. All attempts to perform pull tests resulted in either adhesive or substrate failure, with no damage to the coating itself. The coatings also passed acid attack tests. Scratch resistance, abrasion resistance, and adhesion tests have also been conducted. The optical performance of the coatings was monitored during these tests, and the coatings were visually inspected for any sign of mechanical failure. These tests provide confidence that broadband antireflection coatings are highly durable and will maintain their performance over the lifetime of the solar module. All dielectric metal-oxide multilayer coatings have better optical performance and superior durability compared with alternative single layer porous sol–gel coatings. Thin film CdTe devices are particularly problematic because the antireflection coating is applied to one side of the glass, while device layers are deposited directly on to the opposite glass surface in the superstrate configuration. In thin film CdTe production, the glass is exposed to high temperature processes during the absorber deposition and the cadmium chloride activation treatment. If glass precoated with a broadband antireflection coating is to be used, then the coating must withstand temperatures of up to 550 C. Surprisingly, our studies have shown that multilayer silica/zirconia antireflection coatings on soda lime glass remain unaffected by temperatures reaching 600 C, at which point mild crazing is observed. This is an important observation, demonstrating that low cost glass, which is preprocessed with a broadband antireflection coating, is directly useable in thin film CdTe module production

    3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and Experimental Hole Quality Analysis

    Get PDF
    Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin (~2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process

    Single molecule mu-opioid receptor membrane-dynamics reveal agonist-specific dimer formation with super-resolved precision

    No full text
    G-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer–dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with β-arrestin2 binding to the receptors. This dimerization is independent from, but may precede, µOR internalization. These data suggest a new level of GPCR regulation that links dimer formation to specific agonists and their downstream signals

    Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors

    No full text
    G-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer-dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with β-arrestin2 binding to the receptors. This dimerization is independent from, but may precede, µOR internalization. These data suggest a new level of GPCR regulation that links dimer formation to specific agonists and their downstream signals
    corecore